More on Finite State Machines (FSMs)

1. Objective
To study several different ways of specifying and implementing finite state machines (FSMs). We also
discuss finite state machines with datapath (FSMD).

2. Introduction

There are two basic types of sequential circuits: Mealy and Moore. Because these circuits transit among a
finite number of internal states, they are referred to as finite state machines (FSMs). In a Mealy circuit, the
outputs depend on both the present inputs and state. In a more circuit, the outputs depend only on the
present state. The most common way of schematically representing a Mealy sequential circuit is shown in
Fig.1.

NS z — ,
ps | x=0 x=1lx=0 x=1 X—> > Combinational S » 7
-) circunt e »
:{, ‘:.‘ :‘ : 8 State
1 23 4 soiste
S, | S, S, 0 I CLK—{>|- == =-===-=--~ p| reEmEr
s | ss s | o 1
S, | S Se I 0 <
s | S, S. 0 1 PS
Se | 0S, — 1 —

Figure 1 State transition table and block diagram of a Mealy type seq. circuit (BCD to excess-3 converter)

The state register normally consists of D flip-flops (DFFs). However, other types of flip-flops can be
utilized, such as JKFFs. The normal sequence of events is: (1) inputs X change to a new value, (2) after a
clock period delay, outputs Z and next state NS become stable at the output of the combinational circuit, (3)
the next state signals NS are stored in the state register; that is, next state NS replace present state PS at the
output of the state register, which feeds back into the combinational circuit. At this time, a new cycle is
ready to start. These operational cycles are synchronized with the clock signal CLK.

It is worth mentioning that some authors further classify sequential circuits into two categories. The first
category, referred to as “regular sequential circuits”, includes circuits like (shift) registers, FIFOs, and
binary counters and variants. The second category, referred to as “finite state machines” (FSMs), include
circuits that typically do not exhibit a simple, repetitive pattern.

3. Example 1: Mealy Machine Design — BCD to Excess-3 Code Converter

In this example, we’ll design a serial converter that converts a binary coded decimal (BCD) digit to an
excess-3-coded decimal digit. Excess-3 binary-coded decimal (XS-3) code, also called biased
representation or Excess-N, is a complementary BCD code and numeral system. It was used on some older
computers with a pre-specified number N as a biasing value. It is a way to represent values with a balanced
number of positive and negative numbers. In our example, the XS-3 code is formed by adding 0011 to the
BCD digit. The table and state graph in Fig.2 describe the functionality of our design.

X Input (BCD) Z Output (excess-3)
t t

~

w
~

=}
~

w
~

=}

1 1

NC =no carry
C=carry

0/1

-s0O0OOCOCOOCOO
OCoO=s=s=s w0000
co-—20cO0==00
—o0—m0—0=0=0
D maas 00000
—000O0 =222 20
O= 200 ==00 =
©C—-0 20200

Figure 2 Code converter: table and state graph.

There are several ways to model this sequential machine. One popular/common approach is to use two
processes to represent the two parts of the circuit: the combinational part and the state register. For clarity
and flexibility, we use VHDL’s enumerated data type to represent the FSM’s states. The following VHDL
code describes the converter (file code_conv_2processes.vhd):

-- Behavioral model of a Mealy state machine: code converter w/ 2 processes
-- It is based on its state table. The output (Z) and next state are

-- computed before the active edge of the clock. The state change

-—- occurs on the rising edge of the clock.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity Code Converter is
port (
enable: in std logic;
X, CLK: in std logic;
Z: out std logic);
end Code Converter;

architecture Behavioral of Code Converter is

type state type is (S0, S1, S2, S3, S4, S5, S6);

signal State, Nextstate: state type;

-- a different way: represent states as integer signals:
-- signal State, Nextstate: integer range 0 to 6;

begin

-- Combinational Circuit
process (State, X)
begin
case State is
when SO0 =>
if X = '0' then Z <= '1'; Nextstate <= S1;
else Z <= '0'; Nextstate <= S2; end if;
when S1 =>
if X = '0' then Z <= '1l'; Nextstate <= S3;
else Z <= '0'; Nextstate <= S4; end if;
when S2 =>
if X = '0'" then Z <= '0'; Nextstate <= S4;
else Z <= 'l'; Nextstate <= S4; end if;

2

when S3 =>
if X = '0' then Z <= '0'; Nextstate <= S5;
else Z <= 'l'; Nextstate <= S5; end if;
when S4 =>
if X = '0'" then Z <= '"1'; Nextstate <= S5;
else Z <= '0'; Nextstate <= S6; end if;
when S5 =>
if X = '0' then Z <= '0'; Nextstate <= 350;
else Z <= 'l'; Nextstate <= S0; end if;
when S6 =>

if X = '0'" then Z <= '"1'; Nextstate <= S0;
else Z <= '0'; Nextstate <= S0; end if;
when others => null; -- should not occur
end case;

end process;

-- State Register
process (enable, CLK)
begin
if enable = '0' then
State <= S0;
elsif rising edge (CLK) then
State <= Nextstate;
end if;
end process;

end Behavioral;

Note that in each branch of the case statement, the output Z and Nextstate are assigned values. The second
process represents the state register, which is updated on the rising edge of the CLK signal.

To test this converter on the board, we’ll design a test circuit that uses two shift-registers, the converter, and
a clock divider, as shown in the diagram of Fig.3. The input is provided parallel as four bits via four slide
switches while the output is displayed on four LEDs. We use a clock divider to generate a slower clock
signal (about 1 Hz) to make it easier to monitor the operation of the whole system.

Create a new project (call it bcd_to_excess3_test) and add to it the following VHDL files:
code_conv_2processes.vhd, ck_divider.vhd, shift_register.vhd, and top_level.vhd. These files contain
the declaration and description of all necessary entities to implement the system from Fig.3. These files are
included in the provided .zip file for this example.Read top_level.vhd and figure out what exactly the
“control” block in Fig.3 does.

Do necessary pin assignment, synthesize the design, place and route (i.e., fitter); generate the programming
file and program the FPGA. Verify the operation of your design. Observe and comment.

reset enable
Slide switches 4 LEDS

S w Gy v ~od b e Shift

registeﬁl | | |J i | control | I_| | | |fregister

100MHz Clock clk BCD to XS3 clk

oscillator | | divider

converter

Spartan-6 FPGA

Figure 3 Block diagram of the top level design to test the BCD to XS3 converter.

4. Example 2: Finite state machine with datapath (FSMD) - Bit Difference Calculator

A finite state machine with datapath (FSMD) combines a FSM and regular sequential circuits. The FSM,
sometimes referred to as a control-path or controller, examines the external commands and status and
generates control signals to specify operations of the regular sequential circuits, which are known
collectively as a data-path [1]. The FSMD is used to implement systems described by RT (register
transfer) methodology, where the system’s functionality is specified as data manipulation and transfer
among a collection of registers.

Most realistic circuits combine a controller and a datapath to perform some computation. The use of the
FSMD model is especially recommended whenever the structure of the datapath is important. For example,
if you are creating a custom pipelined datapath for a specific application, specifying the structure of the
pipeline is likely important.

The combination of a controller and datapath can be represented using several models in VHDL. In this
example, we'll look at two different models. To do that, we’ll design and simulate a simple example: a bit
difference calculator. The design’s description is as follows: Given an input of a generic width, the design
entity calculates the difference between the number of 1s and Os. If for example there are 3 more 1s than 0s,
the output is 3. If there are 3 more Os than 1s, the output is -3.

Implementation A: behavioral model using two processes

A simplified pseudocode description of the bit difference calculator is as follows:

Inputs: go, input (arbitrary width)
Outputs: output (arbitrary width), done (1 bit)

while (go == 0);
value = input; // Store input in a register called value.
diff = 0;

for width iterations {
if bit0 of value ==
diff++;
else
diff--;
value = shiftRight (value,l);

}
output

= diff;
done = 1;

One possible implementation as a FSMD is described by the state graph in Fig.4.
The VHDL file top_level_bit_diff_impl_A.vhd describes the entity bit_diff and its architecture the design.

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

entity bit diff is

generic (
width : positive := 16);
port (
clk : in std logic;
rst : in std logic;
go : in std logic;
input : in std logic vector(width-1 downto 0);

output : out std logic vector(width-1 downto O0);
done : out std logic);
end bit diff;

go=0
count = 0; diff=0; done=0;
value = input;

S_CHECK_BIT

count < width

if value(0) = 1 diff++; else diff --;
count++; value = shiftRight{value, 1)

count == bit width

output = diff;
done=1;

Figure 4 State graph of FSMD implementation.
architecture FSMD 2P of bit diff is
type STATE TYPE is (S_INIT, S CHECK BIT, S STORE OUTPUT, S _DONE) ;
signal state, next state : STATE TYPE;

signal value, next value : std logic vector(width-1 downto 0);
signal diff, next diff : signed(width-1 downto 0);

5

signal count, next count

integer range 0 to width;

signal output s, next output : std logic vector (width-1 downto 0);

begin

-- this process defines all registers used in the FSMD
process (clk, rst)

begin

if (rst = '1l') then
value <= (others => '0"'");
count <= 0;
diff <= (others => '0"'");
output s <= (others => '0');
state <= S INIT;

elsif (clk'event and clk = '1l') then
-- these are the only registers used by the 2-process FSMD
value <= next value;
count <= next count;
diff <= next diff;
output s <= next output;
state <= next state;

end 1if;

end process;

-- combinational logic
process(go, input, value, count, diff, output s, state)
variable temp : integer range 0 to width;
begin
next count <= count;
next value <= value;
next diff <= diff;
next output <= output s;
next state <= state;
done <= '0';

case state is
when S INIT =>
next count <= 0;
next diff <= (others => '0'");
next value <= input;

if (go = '1l') then
next state <= S CHECK BIT;
end 1if;

when S CHECK BIT =>

if (value(0) = '0') then
next diff <= diff - 1;
elsif (value(0) = '1') then
next diff <= diff + 1;
end if;

next value <= std logic vector (shift right (unsigned(value),

temp := count + 1;
next count <= temp;
if (temp = width) then
next state <= S STORE OUTPUT;
end if;

when S STORE OUTPUT =>

1));

next output <= std logic vector (diff);
next state <= S DONE;

when S DONE =>
done <= '1";
next state <= S INIT;

when others => null;
end case;
end process;
output <= output_ s;
end FSMD 2P;
At this time, you should create a simple testbench VHDL file (you can do it by modifying

testbench_top_level.vhd file from Example 1) and simulate the above entity. Verify its operation and
comment.

Implementation B: structural model using component instantiations for reqgisters, muxes, adders,
subtracters, etc.

The structural implementation is recommended when the exact structure of the datapath is important. In this
model, we separate the controller and datapath from each other. Then, typically, we define the datapath
structurally and then combine it with a corresponding controller (FSM) described using any of the possible
models discussed in Example 1.

For example, assume that we really wanted to implement the datapath described in Fig.5. Then, the
following files: top_level_bit_diff_impl_B.vhd, datapath.vhd, fsm.vhd, add.vhd, sub.vhd, reg.vhd,
mux2x1.vhd, comp.vhd describe all the entities required for implementing the design. Read these files to
understand the description. Then, use the same testbench that you created to simulate the previous
implementation (implementation A) of this design to verify also the operation of this description too.

input

e sl N7

value_Id ‘L
...........] Value [shift Right]
! ve(0)
Value(0
Off sel :
diff_Id
e Diff

)] }
output Id L) ; | ..F?H?F..?.?!’....Fj—r
T Outeut count Id ¥
16 1
¥ ' R “']
= +
output
count done — &

Figure 5 Block diagram of datapath.

5. Assignment - Optional

Design and code in VHDL the converter from Example 1 but as a Moore machine. Verify its operation both
on the FPGA board and in simulation using a testbench. Write a report. The report should include the state
diagram, VHDL code, discussion of operation, and waveforms.

6. References

[1] P.P. Chu, RTL Hardware Design Using VHDL.: Coding for Efficiency, Portability and Scalability,
Wiley-Interscience, 2006.

