Wide Bandwidth PRECISION ANALOG MULTIPLIER

FEATURES

- WIDE BANDWIDTH: 10MHz typ
- $\pm 0.5 \%$ MAX FOUR-QUADRANT ACCURACY
- INTERNAL WIDE-BANDWIDTH OP AMP
- EASY TO USE
- LOW COST

APPLICATIONS

- PRECISION ANALOG SIGNAL PROCESSING

- MODULATION AND DEMODULATION
- VOLTAGE-CONTROLLED AMPLIFIERS
- VIDEO SIGNAL PROCESSING
- VOLTAGE-CONTROLLED FILTERS AND OSCILLATORS

DESCRIPTION

The MPY634 is a wide bandwidth, high accuracy, fourquadrant analog multiplier. Its accurately laser-trimmed multiplier characteristics make it easy to use in a wide variety of applications with a minimum of external parts, often eliminating all external trimming. Its differential X, Y, and Z inputs allow configuration as a multiplier, squarer, divider, square-rooter, and other functions while maintaining high accuracy.

The wide bandwidth of this new design allows signal processing at IF, RF, and video frequencies. The internal output amplifier of the MPY634 reduces design complexity compared to other high frequency multipliers and balanced modulator circuits. It is capable of performing frequency mixing, balanced modulation, and demodulation with excellent carrier rejection.

An accurate internal voltage reference provides precise setting of the scale factor. The differential Z input allows user-selected scale factors from 0.1 to 10 using external feedback resistors.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPECIFICATIONS

ELECTRICAL

At $T_{A}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$, unless otherwise noted.

SPECIFICATIONS (CONT)

ELECTRICAL

At $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$, unless otherwise noted.

MODEL	MPY634KP/KU												UNITS
	MIN	TYP	MAX										
SQUARE-ROOTER PERFORMANCE Transfer Function ($\mathrm{Z}_{1} \leq \mathrm{Z}_{2}$) Total Error ${ }^{(1)}(1 \mathrm{~V} \leq \mathrm{Z} \leq 10 \mathrm{~V})$		$\left(Z_{2}-Z_{1}\right)$ ± 2.0	$+\mathrm{X}_{2}$	$\sqrt{10 \mathrm{~V}\left(\mathrm{Z}_{2}-\mathrm{Z}_{1}\right)}+\mathrm{X}_{2}$		$+\mathrm{X}_{2}$		± 0.5			*		\%
POWER SUPPLY Supply Voltage: Rated Performance Operating Supply Current, Quiescent	± 8	± 15	$\begin{gathered} \pm 18 \\ 6 \end{gathered}$	± 8	$\begin{gathered} \pm 15 \\ 4 \end{gathered}$	$\begin{gathered} \pm 18 \\ 6 \end{gathered}$	*	*	*	*	*	$\underset{*}{ \pm 20}$	$\begin{aligned} & \text { VDC } \\ & \text { VDC } \\ & \mathrm{mA} \end{aligned}$
TEMPERATURE RANGE Specification Storage	$\begin{aligned} & -40 \\ & -40 \end{aligned}$		$\begin{aligned} & +85 \\ & +85 \end{aligned}$	$\begin{aligned} & -25 \\ & -65 \end{aligned}$		$\begin{gathered} +85 \\ +150 \end{gathered}$	*		*	$\stackrel{-55}{*}$		$\underset{*}{125}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

* Specification same as for MPY634AM.

Gray indicates obsolete parts.
NOTES: (1) Figures given are percent of full scale, $\pm 10 \mathrm{~V}$ (i.e., $0.01 \%=1 \mathrm{mV}$). (2) May be reduced to 3 V using external resistor between $-\mathrm{V}_{\mathrm{s}}$ and SF . (3) Irreducible component due to nonlinearity; excludes effect of offsets.

PIN CONFIGURATIONS

Top View

ABSOLUTE MAXIMUM RATINGS

PARAMETER	MPY634AM/BM	MPY634KP/KU	634
Power Supply Voltage	± 18	*	± 20
Power Dissipation	500 mW	*	*
Output Short-Circuit to Ground	Indefinite	*	*
```Input Voltage ( all X, Y and Z)```	$\pm \mathrm{V}_{\text {S }}$	*	*
Temperature Range:			
Operating	$-25^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C} /+150^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	*
Lead Temperature (soldering, 10s) SOIC ‘KU' Package	$+300^{\circ} \mathrm{C}$	$+260^{\circ} \mathrm{C}$	*

## ORDERING INFORMATION



* Specification same as for MPY634AM/BM.

NOTE: Gray indicates obsolete parts.

## PACKAGE INFORMATION(1)

PRODUCT	PACKAGE	PACKAGE DRAWING   NUMBER
MPY634KP	14-Pin PDIP	010
MPY634KU	16-Pin SOIC	211

NOTE: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

## TYPICAL PERFORMANCE CURVES

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$, unless otherwise noted.







INPUT DIFFERENTIAL-MODE/
COMMON-MODE VOLTAGE



## THEORY OF OPERATION

The transfer function for the MPY634 is:

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{A}\left[\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)}{\mathrm{SF}}-\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)\right]
$$

where:
$\mathrm{A}=$ open-loop gain of the output amplifier (typically 85 dB at DC).
$\mathrm{SF}=$ Scale Factor. Laser-trimmed to 10 V but adjustable over a 3 V to 10 V range using external resistors.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are input voltages. Full-scale input voltage is equal to the selected SF . (Max input voltage = $\pm 1.25 \mathrm{SF}$ ).

An intuitive understanding of transfer function can be gained by analogy to the op amp. By assuming that the open-loop gain, A, of the output operational amplifier is infinite,
inspection of the transfer function reveals that any $\mathrm{V}_{\text {OUT }}$ can be created with an infinitesimally small quantity within the brackets. Then, an application circuit can be analyzed by assigning circuit voltages for all $\mathrm{X}, \mathrm{Y}$ and Z inputs and setting the bracketed quantity equal to zero. For example, the basic multiplier connection in Figure $1, \mathrm{Z}_{1}=\mathrm{V}_{\text {OUT }}$ and $Z_{2}=0$. The quantity within the brackets then reduces to:

$$
\frac{\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right)\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)}{\mathrm{SF}}-\left(\mathrm{V}_{\text {OUT }}-0\right)=0
$$

This approach leads to a simple relationship which can be solved for $\mathrm{V}_{\text {OUT }}$ to provide the closed-loop transfer function. The scale factor is accurately factory adjusted to 10 V and is typically accurate to within $0.1 \%$ or less. The scale factor may be adjusted by connecting a resistor or potentiometer between pin SF and the $-\mathrm{V}_{\mathrm{S}}$ power supply. The value of the external resistor can be approximated by:

$$
\mathrm{R}_{\mathrm{SF}}=5.4 \mathrm{k} \Omega\left(\frac{\mathrm{SF}}{10-\mathrm{SF}}\right)
$$

Internal device tolerances make this relationship accurate to within approximately $25 \%$. Some applications can benefit from reduction of the SF by this technique. The reduced input bias current, noise, and drift achieved by this technique can be likened to operating the input circuitry in a higher gain, thus reducing output contributions to these effects. Adjustment of the scale factor does not affect bandwidth.
The MPY634 is fully characterized at $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ but operation is possible down to $\pm 8 \mathrm{~V}$ with an attendant reduction of input and output range capability. Operation at voltages greater than $\pm 15 \mathrm{~V}$ allows greater output swing to be achieved by using an output feedback attenuator (Figure 1).
As with any wide bandwidth circuit, the power supplies should be bypassed with high frequency ceramic capacitors. These capacitors should be located as near as practical to the power supply connections of the MPY634. Improper bypassing can lead to instability, overshoot, and ringing in the output.


FIGURE 1. Connections for Scale-Factor of Unity.

## BASIC MULTIPLIER CONNECTION

Figure 2 shows the basic connection as a multiplier. Accuracy is fully specified without any additional user-trimming circuitry. Some applications can benefit from trimming of one or more of the inputs. The fully differential inputs facilitate referencing the input quantities to the source voltage common terminal for maximum accuracy. They also allow use of simple offset voltage trimming circuitry as shown on the X input.
The differential Z input allows an offset to be summed in $\mathrm{V}_{\text {OUT }}$. In basic multiplier operation, the $\mathrm{Z}_{2}$ input serves as the output voltage ground reference and should be connected to the ground of the driven system for maximum accuracy.
A method of changing (lowering) SF by connecting to the SF pin was discussed previously. Figure 1 shows an alternative method of changing the effective SF of the overall circuit by using an attenuator in the feedback connection to $\mathrm{Z}_{1}$. This method puts the output amplifier in a higher gain and is thus accompanied by a reduction in bandwidth and an


FIGURE 2. Basic Multiplier Connection.
increase in output offset voltage. The larger output offset may be reduced by applying a trimming voltage to the high impedance input, $\mathrm{Z}_{2}$.
The flexibility of the differential Z inputs allows direct conversion of the output quantity to a current. Figure 3 shows the output voltage differentially-sensed across a series resistor forcing an output-controlled current. Addition of a capacitor load then creates a time integration function useful in a variety of applications such as power computation.


FIGURE 3. Conversion of Output to Current.

## SQUARER CIRCUIT (FREQUENCY DOUBLER)

Squarer, or frequency doubler, operation is achieved by paralleling the X and Y inputs of the standard multiplier circuit. Inverted output can be achieved by reversing the differential input terminals of either the X or Y input. Accuracy in the squaring mode is typically a factor of two better than the specified multiplier mode with maximum error occurring with small (less than 1V) inputs. Better accuracy can be achieved for small input voltage levels by reducing the scale factor, SF .

## DIVIDER OPERATION

The MPY634 can be configured as a divider as shown in Figure 4. High impedance differential inputs for the numerator and denominator are achieved at the Z and X inputs,
respectively. Feedback is applied to the $\mathrm{Y}_{2}$ input, and $\mathrm{Y}_{1}$ is normally referenced to output ground. Alternatively, as the transfer function implies, an input applied to $\mathrm{Y}_{1}$ can be summed directly into $\mathrm{V}_{\text {OUT }}$. Since the feedback connection is made to a multiplying input, the effective gain of the output op amp varies as a function of the denominator input voltage. Therefore, the bandwidth of the divider function is proportional to the denominator voltage (see Typical Performance Curves).


FIGURE 4. Basic Divider Connection.

Accuracy of the divider mode typically ranges from $1.0 \%$ to $2.5 \%$ for a 10 to 1 denominator range depending on device grade. Accuracy is primarily limited by input offset voltages and can be significantly improved by trimming the offset of the X input. A trim voltage of $\pm 3.5 \mathrm{mV}$ applied to the "low side" X input ( $\mathrm{X}_{2}$ for positive input voltages on $\mathrm{X}_{1}$ ) can produce similar accuracies over 100 to 1 denominator range. To trim, apply a signal which varies from 100 mV to 10 V at a low frequency (less than 500 Hz ). An offset sine wave or ramp is suitable. Since the ratio of the quantities should be constant, the ideal output would be a constant 10V. Using AC coupling on an oscilloscope, adjust the offset control for minimum output voltage variation.

## SQUARE-ROOTER

A square-rooter connection is shown in Figure 5. Input voltage is limited to one polarity (positive for the connection shown). The diode prevents circuit latch-up should the input go negative. The circuit can be configured for negative input and positive output by reversing the polarity of both the X and Y inputs. The output polarity can be reversed by reversing the diode and X input polarity. A load resistance of approximately $10 \mathrm{k} \Omega$ must be provided. Trimming for improved accuracy would be accomplished at the Z input.


FIGURE 5. Square-Rooter Connection.

## APPLICATIONS



Multiplier connection followed by a low-pass filter forms phase detector useful in phase-locked-loop circuitry. $\mathrm{R}_{\mathrm{x}}$ is often used in PLL circuitry to provide desired loop-damping characteristics.

FIGURE 6. Phase Detector.


Minor gain adjustments are accomplished with the $1 \mathrm{k} \Omega$ variable resistor connected to the scale factor adjustment pin, SF. Bandwidth of this circuit is limited by $A_{1}$, which is operated at relatively high gain.

FIGURE 7. Voltage-Controlled Amplifier.


FIGURE 8. Sine-Function Generator.


By injecting the input carrier signal into the output through connection to the $Z_{2}$ input, conventional amplitude modulation is achieved. Amplification can be achieved by use of the SF pin, or Z attenuator (at the expense of bandwidth).

FIGURE 9. Linear AM Modulator.


Squaring a sinusoidal input creates an output frequency of twice that of the input. The DC output component is removed by AC-coupling the output.


Frequency Doubler
Input Signal: 20Vp-p, 200kHz Output Signal: 10Vp-p, 400kHz

FIGURE 10. Frequency Doubler.


The basic muliplier connection performs balanced modulation. Carrier rejection can be improved by trimming the offset voltage of the modulation input. Better carrier rejection above 2 MHz is typically achieved by interchanging the $X$ and $Y$ inputs (carrier applied to the X input).


[^0]FIGURE 11. Balanced Modulator.

## PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package <br> Type | Package <br> Drawing | Pins Package <br> Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MPY634AM | OBSOLETE | TO-100 | LME | 10 |  | TBD | Call TI | Call TI |
| MPY634BM | OBSOLETE | TO-100 | LME | 10 | TBD | Call TI | Call TI |  |
| MPY634KP | ACTIVE | PDIP | N | 14 | 25 |  <br> no Sb/Br) | CU NIPDAU | N/A for Pkg Type |
| MPY634KPG4 | ACTIVE | PDIP | N | 14 | 25 |  <br> no Sb/Br) | CU NIPDAU | N/A for Pkg Type |
| MPY634KU | ACTIVE | SOIC | DW | 16 | 40 |  <br> no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| MPY634KU/1K | ACTIVE | SOIC | DW | 16 | 1000 |  <br> no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| MPY634KU/1KE4 | ACTIVE | SOIC | DW | 16 | 1000 |  <br> no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |
| MPY634KUE4 | ACTIVE | SOIC | DW | 16 | 40 |  <br> no Sb/Br) | CU NIPDAU | Level-3-260C-168 HR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION



Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathrm{mm})$	Reel   Width   W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
MPY634KU/1K	SOIC	DW	16	1000	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MPY634KU/1K	SOIC	DW	16	1000	375.0	340.0	57.0



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Leads in true position within $0.010(0,25) R$ @ MMC at seating plane.
D. Pin numbers shown for reference only. Numbers may not be marked on package.
E. Falls within JEDEC MO-006/TO-100.

DW (R-PDSO-G16)

## PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AA.

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

## Products

## Amplifiers

Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsw.ti.com
www.ti.com/clocks
nterface.ti.com
ogic.ti.com
oower.ticom
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprt

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotiva
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontro
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	Www.ti.com/security
Telephony	Www.ti.com/telephony
Video \& Imaging	www.ti.com/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated


[^0]:    Carrier: $\mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}$, Amplitude $=1 \mathrm{Vrms}$
    Signal: $\mathrm{f}_{\mathrm{S}}=120 \mathrm{kHz}$, Amplitude $=10 \mathrm{~V}$ peak

