
A Tubrial on BuiIHn SeFTest

BfSTis a design-for-testabilily (Dm tech-
nique in which testing (test generation
and test application) is accomplished
through built-in hardware katures.

Part 1: Principles

The simplicity of this definition belies at the chip level, are enormous at the
the complexities involved in implement- system level. Alternative strategies are
ing BIST. This article addresses the chipwise and system-foolish. Moreover,
pertinent issues and describes the ad- BIST offers solutions to several major
vantages and limitations of BIST. testing problems.

DURING ITS LIFETIME, a digital
system is tested and diagnosed on
numerous occasions. For the sys-
tem to perform its intended mission
with high availability, testing and di-
agnosis must be quick and effec-
tive. Asensible way to ensure this is
to specify test as one of the system
functions-in other words, self-test.
Digital systems involve a hierarchy
of parts: chips, boards, cabinets,
and so on. At the highest level,
which may include the entire sys-
tem, the operation is controlled by
software. Self-test is often imple
mented in software. While a purely
software approach to self-test may
suffice at thesystem level, it hassev-
era1 disadvantages. Such testing
may have poor diagnostic resolu-
tion because it must test parts de-
signed without specific testability
considerations. In addition, a good
software test can be very long, slow,
and expensive to develop.

An increasingly attractive alter-
native is built-in self-test-that is,
self-test implemented in the hard-
ware itself:

VlSHWANl D. AGRAWAL

AT&T Bell Laboratories

CHARLES R. KlME

KWAL K. SALUJA

Universiiy of Wisconsin,

In the several years since this
magazine's publication of a pair of
tutorial articles on BIST,*z2 both
BIST research and its application
have grown rapidly. Although our
original goal was to write a detailed
tutorial, we found that adequate
covemge of the myriad of techniques
available was not feasible within our
space limitations. Hence, on some
aspects of BIST we present limited
detail, supported by pointers to the
literature. Aiso, to limit the number
of sources the interested reader
needs to consult, we often refer to
books rather than original papers.
In no way do we intend to diminish
the contributions of the original r e
searchers or developers.

Motivations for BlST
When testing is built into the

hardware, it has the potential of b e
ing not only fast and efficient but
also hierarchical. In other words, in
a welldesigned testing strategy, the
same hardware can test chips,
boards, and system. The cost bene
fits, which may not seem significant

S E L F - T E S T

Table 1. BISTcosts.

Design, test Maintenance Diagnosis, Service
development Fabrication Testing test repair interruption

Chips +/-
1 Boards +/-
1 Systems +/-

~ + cost increase; - cost reduction (saving); +/- cost increase = saving

The complexity issue. As the com-
plexity of VLSl systems increases, we ask
if the testing problem can be parti-
tioned. The answer, unfortunately, is no.
For example, consider two devices con-
nected in a cascade. There is often no
simple way to derive tests for the ca.!+
cade from the given tests for its individ-
ual parts. Another possibility is the use of
a hierarchical approach. The complex
design automation problems of synthe-
sis and physical design are often solved
through hierarchical procedures. The
testing problem, however, is not easy to
solve with traditional hierarchical tech-
niques. For example, no simple method
exists for deriving a board test from tests
for chips on the board.

BET, however, does offer a hierarchi-
cal solution to the testing problem. Con-
sider the testing of a chip embedded in
a board that is a part of a system. The
topdown hierarchy consists of system,
boards, and chips. Suppose all levels of
the hierarchy use BIST. To test the chip,
the system sends a control signal to the
board, which in turn activates self-test
on the chip and passes the result back to
the system. Thus, BIST provides efficient
testing of the embedded components
and interconnections, reducing the bur-
den on system-level test, which need
only verify the components’ functional
synergy.

The quality issue. A product’s qual-
ity depends on the tenacity of its tests.
Test tenacity or ability is most frequent-
ly measured as coverage of single stuck-

at faults. Thus, we calibrate tests accord-
ing to their ability to detect single lines
that appear as if shorted to ground
(stuck-at4) or to the power supply
(stuck-at-1). Since the kind and number
of faults that occur depends on the type
of device (chip, board, and so on) and
the technology (CMOS, bipolar, GaAs),
evaluating test quality can be a compli-
cated task.3 In general, quality require-
ments such as 95% fault coverage for
complex VISI chips or 100% coverage of
all interconnect faults on a printed cir-
cuit board (PCB) are based on practical
considerations. The test engineer tries to
achieve a low reject ratio (percentage of
faulty parts in the number passing the
test)-for example, 1 in 10,00&while
controlling the cost of test generation
and application. For very large systems,
such requirements are achievable only
through DIT. Our discussion will show
that BIST is the preferred form of DIT.

Test generation problem. As point-
ed out earlier, the problem of generating
tests is difficult to solve by using hierar-
chy. The difficulty lies in carrying the test
stimulus through many layers of circuit-
ry to the element under test and then
conveying the result again through
many layers of circuity to an observable
point. BIST simplifies this problem by
localizing testing.

Test application problem. For al-
most a decade, incircuit testing (ICT)
has dominated the PCB testing scene.4
In this method, a bedsf-nails fixture cus-

tomized for the board under test enables
the tester to access the pins of the chips
mounted on the board. ICT effectively
applies chip tests for diagnosis and also
effectively tests board wiring. The meth-
od, however, presents several problems.
First, ICT is effective only after a board is
removed from the system; therefore, it is
no help in system-level diagnosis. Sec-
ond, in surfacemount technology
(SMT), components are often mounted
densely on both sides of the board. Bed-
of-nails fixtures for such boards are ei-
ther too expensive or impossible to
build.

BET offers a superior solution to the
test application problem. First, built-in
test circuitry can test chips, boards, and
the entire system without expensive, ex-
ternal automatic test equipment. Sec-
ond, for off-line testing of boards and
chips and for production testing, we can
use the same tests and test circuitry that
we use at the system level.

Economics of BIST. In deciding
whether to use BET, system planners
and designers must weigh costs against
benefits. At the chip level, BIST offers
small savings in testing costs. But in
product lifecycle costs, the savings are
overwhelmingly in favor of BIST.

Table 1 shows the impact of BIST on
testing costs for chips, boards, and sys-
tems. We find that the additional ex-
pense of designing BIST hardware is
somewhat balanced by the savings from
test generation. Fabrication cost increas
es at all levels due to the extra hardware

74 IEEE DESIGN & TEST OF COMPUTERS

BIST requires. Testing cost decreases
due to moreefficient tests, lessexpensive
test equipment, and improved trouble
shooting during assembly and integra-
tion. Maintenance test is a system-level
function involving “sanity checks” and
diagnosis. Thus, BISTs impact on main-
tenance cost is greatest at the system
operation level. BIST also reduces diag-
nosis and repair costs at the board and
system levels. In alternative strategies,
lengthy or improper diagnosis is often
responsible for great loss of revenue due
to service interruption; BIST decreases
such interruption.

The main point of Table 1 is the signif-
icant benefit that BIST provides at the
system level. Thus, even with consider-
ably lower benefits at chip and board
levels, we believe BlST is still the best
DFTalternative. On this point the reader
should consult pertinent works on BIST
 economic^.^^^

BlST concepts
In considering the concepts underly-

ing BIST, we must look at the basic BET
architecture and its hierarchical applica-
tion. Then we will focus on two specific
BIST components: pattern generation
and response analysis.

BIST architecture. The basic BIST
architecture requires the addition of
three hardware blocks to a digital cir-
cuit: a pattern generator, a response an-
alyzer, and a test controller. Examples of
pattern generators are a ROM with
stored patterns, a counter, and a linear
feedback shift register (LFSR). A typical
response analyzer is a comparator with
stored responses or an LFSR used as a
signature analyzer. A control block is
necessary to activate the test and ana-
lyze the responses. However, in general,
several test-related functions can be ex-
ecuted through a test manager (or test
controller) circuit.

Consider a hierarchical application of
the BlST concept. The system consists of

MARCH 1993

several circuit boards. Each board may
contain several VLSI chips. Figure 1
shows such a system. The test manager
at the system level can simultaneously
activate self-test on all boards. The test
manager on each board, in turn, acti-
vates self-test on each chip on that
board. A chip test manager is responsi-
ble for executing self-test on the chip
and then transmitting the result (fault-
free or faulty) to the test manager of the
board containing the chip. The board
test manager accumulates test results
from all its chips and transmits them to
the system test manager. Using these r e
sults, the system test manager can isolate
faulty chips and boards.

The effectiveness of this diagnosis
procedure depends on the thorough-
ness of the self-test implemented on
chips. Thus, fault coverage is a major is-
sue in BIST designs. Other important is-
sues are area overhead and its impact
on chip yield, additional pins required
for test, and performance penalty.

At the chip level, BIST involves the a p
plication of test patterns to the logic to
be tested and observation of the corre
sponding responses. Often, the test engi-
neer modifies onchip logic, using some
DFT technique such as scan, so that
latches and flipflops can be controlled
independently of the circuit’s combina-
tional logic. Thus, in most but not all c w
es, the circuit under test (CUT) consists
of combinational logic. However, logic
may intervene between the pattern gen-
erator and the CUT and between the
CUT and the response analyzer, as indi-
cated by the shaded area in Figure 1.

Pattern generation. We now dis-
cuss BIST test pattern types, the means
of obtaining them, and related fault cov-
erage issues. Distinct BIST methodolo-
gies are associated with each type of test
pattern.

Stored patterns. Stored-pattern BIST
may use programs or microprograms,
typically stored in ROM, to perform func-

System

manager

Board
manager

rn manager

Chip

Figure 1. BISThierarchy.

ional tests of the hardware. Successful
lpplications of such techniques exist,7
but they are not our focus here. In alter-
iative techniques, we use traditional
iutomatic test pattern generation
ATF’G) and fault simulation to generate
he test patterns. We store the patterns
)n the chip or board, apply them to the
:UT when BIST is activated, and com-
)are the CUT responses with the corre
ponding stored responses. Because of
he stored data’s magnitude, this meth-
)d is attractive only in limited cases.
l e se include testing structured logic
ind detecting a small number of faults
lot handled by other BlST techniques.
herall, although stored-pattern BIST
:an provide excellent fault coverage, it
ias limited applicability due to its high
rea overhead.

Exhaustiue or pseudoexhaustive pat-
Pms. Exhaustivepattern BlST eliminates
he test generation process and has very
iigh fault coverage. To test an n-input
dock of combinational logic, we apply
ill possible 2”-input patterns to the
dock. Even with high clock speeds, the
ime required to apply the patterns may
nake exhaustivepattern BIST impracti-

75

B U I L T - I N S E L F - T E S T
~~ ~

Table 2. Hardware structures used for BIST.
-~

Pattern generators Response analyzers

ROM ROM and comparison logic
LFSR LFSR

Cellular automoton Cellular automaton
Binary counter Level counter

Transition counter
XOR trees XOR trees

Multiple-input signature register (MISR)

Note: Each pattern generator in the left column can be used with any response onalyzer in

the right column.

cal for a circuit with n greater than about
25. Thus, we must partition or segment
the logic into smaller, possibly overlap
ping blocks with fewer than n inputs.
Then we exhaustively test each block.
This approach is called pseudoexhaus-
tive-pattern B1ST.8a9, P- 461

Fault coverage for the exhaustive or
the pseudoexhaustive method is nearly
100% and, with proper design, can be
achieved without fault simulation. Ex-
haustive testing detects all detectable
faults that do not induce sequential b e
havior within each block. Extensive cir-
cuit partitioning and segmentation may
require significant effort, and the added
hardware to achieve such partitioning
and segmentation can be expensive. The
added hardware may also adversely af-
fect performance if avoiding critical tim-
ing paths becomes impossible. We can
keep test application time reasonable by
choosing suitably small values of n for
blocks that can be tested in parallel.

Pseudorandom patterns. In contrast
with other methods, pseudorandom-
pattern BIST may require a long test time
and necessitate evaluation of fault cov-
erage by fault simulation. This pattern
type, however, has the potential for low-
er hardware and performance over-
heads and less design effort than the
preceding methods. In pseudorandom
test patterns, each bit has an approxi-

76

mately equal probability of being a 0 or
a 1 (as well as other statistical properties
not detailed here1@). The number of pat-
terns applied is typically of the order of
lo3 to lo7 and is related to the circuit's
testability and the fault coverage
required.

Among the pattern types discussed so
far, the exhaustive and the pseudoran-
dom are the most frequently used. A p
plying exhaustive patterns for a portion of a
VLSI circuit is comparatively stmightfor-
ward, but applying pseudorandom pat-
terns for a portion or all of the circuit is
considerably more complex. These are
the principal related issues: 1) How do
we determine the number of pseudoran-
dom test patterns to apply? 2) How do
we evaluate fault coverage? 3) How do
we deal with residual uncovered faults,
often referred to as hard-tdetect or run-
dom-pattem-resistant faults?

Research has demonstrated that one
can estimate the number of pseudoran-
dom patterns required for a circuit from
information based on the desired fault
coverage and on either the set of hard-
to-detect faults" or circuit testability.I2
The number of patterns can be fairly
large; 1,000,000 is not uncommon. To
perform exact fault simulation forsuch a
large pattern set, a fast fault simulation
technique is essential. Forcombinational
circuits, parallel-pattern singlefault propa-
gation (PPSFP) issuch a techniq~e.'~~p. 'I2

If the test length is too long to be prac-
tical (more than a few million vectors),
one can deal with some of the hard-to-
detect faults by other means. One a p
proach is to use deterministic patterns
generated by ATPG for detection of
these faults. Another is to modify the com-
binational logic to improve te~tability.'~J).~~

Weighted pseudorandom patterns. A
hybrid between pseudorandom and
stored-pattern BIST, weighted pseudc-
random-pattern BIST is effective for deal-
ing with hard-tedetect faults. In a
pseudorandom test, each input bit has a
probability of 1/2 of being either a 0 or a
1. In a weighted pseudorandom test, the
probabilities, or input weights, can dif-
fer. The essence of weighted pseudoran-
dom testing is to bias the probabilities of
the input bitsso that the tests needed for
hard-to-detect faults are more likely to
occur. One approach uses software that
determines a single or multipleweight set
based on a probabilistic analysis of the
hard-todetect faults.'3, P. 142 Another a p
proach uses a heuristic-based initial
weight set followed by additional weight
sets produced with the help of an ATPG
system.l3>P. lj0 The weights are either r e
alized by logic or stored in onchip ROM.
With these techniques, researchers ob-
tained fault coverage over 98% for 10
designs, which is the same as the cover-
age of deterministic test ~ectors. '~~P. 159

BIST test patterns are generated by a
variety of hardware structures, as shown
in the left half of Table 2. The most
prevalent approach for exhaustive,
pseudoexhaustive, and pseudorandom
patterns is the use of an LFSR. We dis-
cuss the theory of LFSRS and their appli-
cation to both pattern generation and
response analysis in the box on page 79.
An alternative pattern generator is the
cellular automaton,I4 in which each
cell, consisting of a flipflop and a few
gates, is connected only to its neighbor-
ing cells. Advantages claimed for this
pattern generator are that it has only le
cal connections between cells and that

IEEE DESIGN & TEST OF COMPUTERS

it produces patterns more like true ran-
dom patterns than those from an LFSR.

Researchers are focusing on new
techniques for producing shorter BIST
test pattern sequences than are achiev-
able by the usual pseudorandom tech-
niques. Their approach is to produce
specific designs for BlST pattern genera-
tors using LFSRs or cellular automata.
These generators produce sequences
that include a set of deterministically
generated test patterns for the CUT.’517

Response analysis. The right half of
Table 2 shows the hardware structures
that we can employ to determine the
validity of a CUT’S outputs. Clearly,
when we apply test patterns to test the
CUT, we must know its fault-free
response(s). For a given set of test vec-
tors applied in a particular order, we can
obtain the expected responses and their
order from a “gold” (knowngood) CUT
or by simulating the CUT. Similar to
stored-pattern BIST, we can also store
responses in onchip ROM, but such a
scheme can require too much silicon
area to be of practical value. Alternative
ly, methods that compress the test pat-
terns and the corresponding responses
of a fault-free CUT and regenerate them
during self-test are also of limited value
for general VU1 circuits.

An alternative to response compres
sion is compaction of responses into a
relatively short binary sequence(s)
called a signature(s). Let us explain the
difference between compression and
compaction: Compression is lossless in
the sense that the original sequence can
be fully regenerated from the com-
pressed sequence. In the case of com-
paction, regenerating the original
sequence from the compacted s e
quence may not be possible. For the
more mathematically-minded reader, it
suffices to say that the compression
function is invertible, whereas the com-
paction function is not. In the following
paragraphs, we explain in abstract terms
the basic concept of compaction as

MARCH 1993

pattern ,~.---.........................
generator I CUT
(counter) ’ f = a . b t b . c

-

Figure 2. BlST of a threevariable function.

used in self-test and then describe pro-
posed compaction methods and their
relative strengths and weaknesses.

After obtaining a response sequence
R for a given order of test vectors from a
gold CUT or a simulator, we use a com-
paction function C to produce a vector
or a set of vectors C(R). We expect the
number of bits in C(R) to be far fewer
than the number in R. We store the com-
pacted vectors on chip or off chip, and,
during BIST, we use the compaction
function C to, compact the C v s actual
responses R to provide C(R). Finally,
to determine the CUT’S status (fault-frfe
or faulty), we compare C(R) and C(R).
We declare the CUT fault-free if these
two values are identical.

For compaction to be of practical val-
ue, the function Cshould be simple to
implement on chip, the compacted r e
sponses should be sufficiently small,
and, above all, a faulty CUT should not
be declared fault-free. If a faulty circuit
and the fault-free circuit provide differ-
ent response sequences but the com-
pacted response sequences are identical,
aliasing has occurred.

The BlST literature has described
three compaction functions in detail. To
explain these methods, we use a simple
CUT consisting of a threevariable com-
binational function. Figure 2 shows a r e
alization of the function. In describing
these methods, we assume the pattern
generator is a counter that generates all

Transition counter

.....................................

LFSR x3tx2t1

I !

-1 Syndrome counter I

eight input vectors for testing the CUT.
One of the first compaction functions

proposed in the context of testing was
the transition count.”, P. 94 This function
counts the total number of 0-to-1 and 1-
to4 transitions in the response stream.
For the example function in Figure 2, the
transition count value for the fault-free
circuit is three, asshown in Table 3 (next
page). The table also shows transition
count values for three different faults in
the circuit.

The signature analysis function was
first used by Hewlett-Packard as a com-
paction function and was described by
Frohwerk in 1977.”3P.1m In this method,
the response sequence is fed to an LFSR.
The compacted sequence, whose
length is the same as that of the LFSR, is
called the signature of the CUT for the
applied test vector sequence. Table 3
(next page) summarizes the signatures
of the example circuit and three faulty
circuits. A special case of this method,
parity check compaction, uses an E R
of length one.111p.97

The syndrome or IS counting func-
tion was proposed in 1980.”.P. IO2 This
compaction function counts the total
number of 1’s in the response sequence
(the total may be normalized with re-
spect to the length of the response s e
quence). The total is called the
syndrome of the CUT. Table 3 lists the
syndromes of the example function and
the three faulty functions.

77

B U I L T - I N S E L F - T E S T

Table 3. Analysis of circuit in Figure 2.

I abc Fault-free a stuck-at- 1 f stuck-at- 1 6 stuck-at- 1 ~

l

000

01 0
1 001

1 100
1 101 , 110

' 011

1 1 1

1 Function

Transition

Signature
count 3 3 0 1 I I

I analysis 001 101 00 1 01 0
Syndrome 4 6 8 4

It is evident from Table 3 that all three count and syndrome testing methods
compaction functions are prone to alias- I for multipleoutput CUTS.*~
ing. Detection of aliasing is a far more ex- We can also use a space compactor,
pensive process than fault simulation typically a linear circuit, to reduce the
because it entails computing C(R) for ev- number of outputs to be c~mpacted . '~
ely fault in the fault list. That typically For the signature method, we integrate
requires simulating every fault for every ' the linear circuit with the LFSR to obtain
test vector without fault dropping. Hence, 1 a multiple-input linear feedback shift reg-
researchers have proposed models to corn- , ister (MISR), which compacts the output
pute aliasing probability ar~alytically.'~~p 69 sequences from a multipleoutput CUT.
These models often make assumptions ' An MISR can be viewed as performing
about the occurrence of emrs in the CUTS 1 space compaction while compacting
output sequence. No reasonable models,
however, relate errors to faults in a circuit. Once again aliasing raises its ugly
Generally spealung, the three compaction 1 head, posing a problem for multipleout-
methods have identical aliasing probabili- put CUTs. Researchers have attempted to
ties, which decrease exponentially with an ' analyze the aliasing probability for com-
increase in the test sequence length or the I pacted multiple-output responses20,21
number of bits in C(@. l and to reduce that probability. Some of

Our description of the three methods the methods proposed to reduce aliasing
seems to imply that compaction is appli- are compaction-testable designs?, P 431
cable only to singleoutput CUTs. This is multiplesignatures,22 output data modifi-
not so. We can extend the transition cation?3 and rearranging test vect0rs.2~
count and syndrome functions to multi- By far, the most popular compaction
ple-output CUTs by assigning different function is signature analysis, realized
weights to the outputs and thus obtain- by means of an LFSR or an MISR. These
ing a weighted compaction of the out- structures are easy to implement, and
put sequence. Saxena and Robinson 1 because they are serially scannable,
present a generalization of the transition they can be read out easily by an exter-

the output sequences from a CUT.

78

nal tester at the completion of self-test.
Finally, there has been study of the

use of the cellular automaton for re-
sponse analysis as well as for pattern
generation." This structure's effective-
ness in BIST environments is yet to be
fully established.

WE HAVE INTRODUCED BIST in the con-
text of its application not only to chips
but to systems by use of a hierarchical
BlST architecture. Thisapproach appears
to be expanding rapidly in commercial
products. For example, extensive use of
BlST in workstation products has recent-
ly been reported. The development of
hierarchical BlST applications is likely to
accelerate as the use of surface-mount
technology further limits conventional
board testing methods. The BIST solu-
tion's positive economic impact at the
system level motivates exploration of
this hierarchical approach.

Both conventional and hierarchical
BIST employ the same fundamental con-
cepts: pattern generation, response anal-
ysis, and test management. The pattern
generation and response analysis tech-
niques we detailed in Part 1 differ little
in conventional and hierarchical a p
proaches. Most contemporaly pattern
generation and response analysis imple
mentations are based on LFSRs. Thus, the
basic understanding of LFSR theoly pre
sented here is useful to the BET designer.

In Part 2, we will examine hardware im-
plementations of BET structures based on
the concepts introduced here, and we will
discuss several real-world BIST applica-
tions. Finally, we will describe CAD tools
critical to the production of correct, effi-
cient, and effective BIST designs.

Acknowledgment
The National Science Foundation, Divi-

sion of Microelectronic information Process-
ing Systems, under grants MIP-9003292 and
MIP-9111886, partially supported this work.

IEEE DESIGN I TEST OF COMPUTERS

LFSR theory

Linear feedback shift registers are
widely used in BlST because they are
simple and fairly regular in structure,
their shift property integrates easilywith
serial scan, and they can generate ex-
haustive and/or pseudorandom pat-
terns. The typical components of an
LFSR are D flip-flops and XOR gates.
Despite their simple appearance, LFSRs
are based on a rather complex mathe-
matical theory.' Here we present only
the aspects of the theory that help ex-
plain their behavior as pattern genera-
tors and response analyzers.

Figure A shows two example LFSRs.
Both use D flip-flops and linear logic el-
ements (XOR gates). Their basic differ-
ence is that the Figure A1 circuit uses
XORs between flip-flops, whereas the
Figure A2 circuit does not; instead the
XORs appear only in the feedback
path. For this reason we call the Figure
A1 realization an internal-XOR LFSR
and the Figure A2 realization an
external-XOR LFSR. The two types are
equivalent in the sense that, knowing
the properties of the first structure, we
can deduce the properties of the sec-
ond.2 We will concentrate on the be-
havior of h e first type of structures.

In test pattern generation mode, a
pattern generated by an LFSR is the

Figure A. Example LFSRs: infernal-XOR
(1);external-XOR (2).

state of all the D flip-flops in the LFSR. Ob-
viously, we can deduce consecutive pat-
terns generated by an LFSR by simulating
it. But by associating polynomials with
LFSRs and bit streams or vectors, we can
use polynomial algebra to predict LFSR
behavior. Throughout this discussion we
discuss polynomials with binary coeffi-
cients, but almost all the results can be
stated in more general terms.

We can express a binary vector R =
rmrm-l ... ro as a polynomial r,,,xm +
r,,+lF' + ... + ro. For example, a vector
101 1 1 can be written 2 + 2 + x + 1. The
superscript of the highest nonzero term in
a polynomial is called the degree OF the
polynomial. We can perform arithmetic
on polynomials, just as we can on inte-
gers. For example, consider two polyno-
mials, q(x) = x3 + x2 + 1 of degree 3, and
Ax) = x2 + x + 1 of degree 2. Then:

dx) + 4.) = x3 + 2x2 + X + 2 = x3 + x

since coefficients are added modulo 2.
Similarly,

d ~) . 4.) =2 + M + 2x3 + 2u2 + X +

1 =x5+x+1

We can also express polynomials mod
a polynomial. That is, two polynomials
dx) and s(x) are congruent modulo n(x),
written as dx) = s(x) mod n(x) if there is a
polynomial 4.) such that dx) = n(x) . q(x)
+ s(xJ As with integers, we find the least
positive residue in polynomials by divid-
ing Ax) by n(x) and taking the remainder.
Thus, we can perform modulus arithmetic
on polynomials as we do with integers.
For example:

(x2+x+ 1) . (a+ 1)=(2+#+$+
x2+x+ l)mod(#+x)

Performing the required division, we

get

x + l

x 4 + x x 5 + x 4 + x 3 + x 2 + x + l

x5 X2

1
x 4 + x 3 + x
x 4 + X

x3 +1

Therefore, (x2 + x + 1) . (2 + 1) =
+ 1 mod (2 + x). Similar to prime nur
bers (numbers that cannot be factore
for integers, we can define polynon
als that cannot be factored. Such pol
nomials are called irreducible. Fi

example, the polynomials dx) = #
x3+x2+x+ 1 andb(x)=#+d+
are two irreducible polynomials of d
gree 4. Irreducible polynomials he
define an algebraic structure called
held. Although the general study of 1
SRs requires an understanding of fielc
we will forgo the details for lack
space. Let dx) be a polynomial of d
gree n, and let us compute x, x2,x3, ,

mod dx). Clearly all these polynomic
will be of degree less than that of p(r

For a special type of polynomial p(;
while computing increasing powers
x mod dx), we obtain all possible no
zero polynomials of degree less thc
that of p(x)-that is, 2" - 1 distinct no
zero polynomials. Such a polynomi
dx) is called primitive. Let us clarify 4
through an example by computing
~ 2 ~ x 3 , ... mod dx). The sequence \
obtain is x, x2, 9, # = x3 + x2 + x +
2 = 1, x6 = x. We can now concluc
that the succeeding powers of x w
generate the same remainders ov
and over. Thus, in this case, succee
ing powers of x generate only five d
tinct polynomials. On the other hand,
if we repeat the same process for the
polynomial b(x), we obtain all 15 non-
zero polynomials of degree less than 4.

continued on p. 80

MARCH 1993 79

B U I L T - I N S E L F - T E S T

~ LFSR theory (continued)

1 Thus, the polynomial b(x) is primitive,
1 and the polynomial a(x) is not primitive, , although both are irreducible.

What is the relation between polyno- ' mial algebra and LFSRs? Like a binary
1 vector, an LFSR can also be expressed ' as a polynomial. Figure 6 is a general
1 representation of an internal-XOR
1 LFSR. This LFSR i s represented by a
1 polynomial g(x) = X" + g,lx+' + . . . +
l go. We call g(x) the LFSRs characteris- , tic polynomial. Thus, the characteristic

polynomial of the LFSR in Figure A1 is
1 x" + 2 + 1. Furthermore, the contents

of an LFSR, being a binary vector, can
~ also be expressed by a polynomial of
~ degree less than the degree of its char-

acteristic polynomial.
l We also know that a left shift of a bi-
I nary vector in the polynomial represen-
1 tation of vectors is equivalent to multi-

plication by x. In the case of LFSRs, a left
shift of an LFSR is equivalent to multiply-
ing its contents by x, then computing its ' value mod the characteristic polynomial ' of the LFSR. To explain this through an

I example, let us assume that the content
of the LFSR of Figure A1 is 101 0 = x3 +

' x. Multiplying it byxgivesxd+x2=x3+
x2 + 1 mod (2 + x3 + 1). The reader can

1 verify this result by manually simulating
Figure A1 's LFSR beginning in initial
state 101 0.

From the preceding discussion and ex- ' ample, we generalize that if an LFSR of
I characteristic polynomial p(x) of degree n
~ is initialized to A n other words, the ini-
l tialstateoftheLFSRis 00... O l ~ t h ~
~ on consecutive shifts the contents of the
I LFSR will be2 mod Ax), 2 mod dx), . . .,

and so on. If p(x) is a primitive pdynomi-
1 al, the vectors generated by the LFSR will
l be all possible 2"-1 nonzero vectors.

Hence, such an LFSR can serve as an ex-
' haustive (almost) test pattern generator for
I a CUT of n inputs. In fact, we can make a
1 stronger statement: An LFSR with a char-

mFP
Figure B. A general representation of an internal-XOR LFSR.

U U U U U

Figure C. An LFSR for dividing a polynomial.

Figure D. An external-XOR LFSR for dividing a polynomial.

aderistic polynomial g[xJ of degree n will
generate all possible 2"-1 nonzero wxtm-s
if and only ifg(xJ is a primitive pdynomial.

Yet another characteristic of the vectors
generated by an LFSR is that they appear
to be randomly ordered.' In fact, they sat-
isfy most of the properties of random num-
bers even though we can predict them
deterministically from the LFSRs present
state and its characteristic polynomial.
Therefore, we call these vectors pseudo-
random vectors.

An LFSR modified to accept an external
input, as shown in Figure C, acts as a poly-
nomial divider. It divides the input se-
quence, represented by a polynomial, by
the characteristic polynomial g(x) of the
LFSR. As this division proceeds bit by bit,
the quotient sequence appears at h e out-
put of the LFSR and the remainder appears
in the LFSR with every shift of the input se-
quence into the LFSR. Notice that the input

polynomial is shifted with the highest de-
gree coefficient first (remember, division
starts from the highest degree end). The
polynomial divider structure of the LFSR
often is used as a signature analyzer.
The reader can verify that for the exam-
ple in Figure 2 and Table 3, all the sig-
natures are indeed correct. Error
correction coding (ECC) applications
make extensive use of the division prcp-
erty of LFSRs and the analogy between
irreducible polynomials and prime num-
bers.2

Before concluding our discussion of
LFSRs, we must comment on the relation
between internal-XOR and external-
XOR LFSRs. There is a one-to-one cor-
respondence between the behaviors of
the two types. The characteristic poly-
nomial for the external-XOR LFSR
shown in Figure D is dx) = Xn + gwlrr-l
+ . . . + go. Notice that the coefficients gj

80 IEEE DESIGN & TEST OF COMPUTERS

LFSR theory (continued)

in this figure are labeled differently
from the preceding two figures. An ex-
ternal-XOR LFSR also acts as a polyno-
mial divider and produces the correct
quotient bit sequence. However, the LF-
S R s contents is not the remainder as it
is with the internal-XOR LFSR. Readers
familiar with the theory and design of
sequential circuits can draw an analo-
gy that the two LFSRs are different real-
izations of the same state table using
two different state assignments.

Both internal-XOR and external-XOR
LFSRs have only one external input.
They can be modified to obtain three
different realizations of multiple-input
LFSRs (or multiple-input signature reg-
isters, MISRs), as shown in Figure E. For
theoretical analysis, we can reduce
each realization to an equivalent sin-

gle-input LFSR by rearranging the in-
p u t ~ . ~ We achieve the rearrangement
by means of the commutative proper-
ty of the XOR operator and the fact that
a flip-flop‘s input and output are relat-
ed by a shift or delay operator.

References
1. S.W. Golomb, Shift Register Se-

quences, Aegean Park Press, Lagu-
na Hills, Calif., 1982.

2. W.W. Peterson and E.J. Weldon,
Jr., Error-Correcting Codes, John
Wiley & Sons, New York, 1972.

3. T. Sridhar et al., “Analysis and Sim-
ulation of Parallel Signature Anab-
ers,” lnt‘/ J. Computers and Mahe-
matics with Applications, Vol. 13,
No. 5/6, Feb. 1987, pp. 537-545.

I I 1 /

Figure E. Three multiple-input IFSRs, or multiple-input signature registers (MISRs).

References
1. E.J. McCluskey, “Built-In Self-Test Tech-

niques,” IEEE Design & Test o f Comput-
ers, Vol. 2, No. 2, Apr. 1985, pp. 21-28.

2. E.J. McCluskey, “Built-In Self-Test Struc-
tures,” IEEE Design & Test of Computers,
Vol. 2, No. 2, Apr. 1985, pp. 29-36.

3. S.C. Seth and V.D. Agrawal, “Character-
izing the LSI Yield Equation from Wafer
Test Data,” IEEE Trans. Computer-Aided

Design, Vol. CAD-3, No. 4, Apr. 1984, pp.
123-126.

4. 1. Bateson, In-Circuit Testing, Van Nos-
trand Reinhold, New York, 1985.

5. A.P. Ambler et al., “Economically Viable
Automatic Insertion of Self-Test Features
for Custom VLSI,” hoc . Int’l Test Conf.,
IEEEComputerSociety Press, Los Alam-
itos, Calif., Sept. 1986, pp. 232-243.

6. I.D. Dear, “Economic Effects in Design
and Test” IEEEDesign & Test o f Cornput-
ers, Vol. 8, No. 4, Dec. 1991, pp. 64-77.

7. J. Kuban and W. Bruce, “Self-Testing the
Motorola MC6804P2,” IEEE Design &
Test o f Computers, Vol. 1, No. 2, May
1984, pp. 33-41.

8. E. Wu, “PEST: A Tool for Implementing
Pseudo-Exhaustive Self-Test,” AT&T
Technical .I., Vol. 70, No. 1, Jan./Feb.

9. M. Abramovici, M. Breuer, and A. Fried-
man, Digital Systems Testing and Test-
able Design, Computer Science Press,
New York, 1991.

10. S.W. Golomb, Shift Register Sequences,
Aegean Park Press, Laguna Hills, Calif.,
1982.

11. P.H. Bardell, W.H. McAnney, and J. Sa-
vir, Built-In Test for VLSI: Pseudorandom
Techniques, John Wiley & Sons, New
York, 1987.

12. S.C. Seth, V.D. Agrawal, and H. Farhat,
“A Statistical Theory of Digital Circuit
Testability,” IEEE Trans. Computers, Vol.
C-39, No. 4, Apr. 1990, pp. 582-586.

13. E.B. Eichelberger et al.,ShucturedLogic
Testing, PrenticeHall, Englewood Cliffs,
N.J., 1991.

14. P.D. Hottensius, R.D. McLeod,andB.W.
Podaima, “Cellular Automata Circuits
for Built-In Self-Test,” IBA4 J. Research
andDevelopment, Vol. 34, No. 213, Mar./
May 1990, pp. 389405.

15. C. Dufaza and G. Cambon, “LFSR-Based
Deterministic and Pseudo-random Test
Pattern Generator Structures,” Proc. Eu-
ropean Test Conf, IEEE CS Press, 1991,

16. M. Khare and A. Albicki, “Cellular Au-
tomata Used for Test Pattern Genera-
tion,” Proc. Int ’/ Con[Computer Desgn,
IEEE CS Press, 1987, pp. 5&59.

17. J. van Sas, F. Catthoor, and H. De Man,
“Cellular Automata-Based Self-Test for
Programmable Data Paths,” Proc. Int’l
Test Conf., IEEE CS Press, 1990, pp. 769-
778.

18. N.R. Saxena and J.P. Robinson, “Syn-
drome and Transition Count Are Uncor-
related,” IEEE Trans. Information Theory,

1991, pp. 87-100.

pp. 27-34.

~

1

MARCH 1993 81

B u l l T - I N S E L F - T E S l

Selected sources of
BlST information

Abramovici, M., M. Breuer, and A.
Friedman, Digital Systems Jesting and
JestaHe Design, Computer Science
Press (W. H. Freeman and Co.), New
York, 1 990. The lcrtest comprehensive
text on testing.

Agrawal, V.D. and S.C. Seth, Jest

er Society Press, Los Alamitos, Calif.,
1988. Easy-bread fubrial on testing

- kwchiP, IEEE cornput-

with comprehensive biblicgmphy.

Bardell, P., W. McAnney, and J.
Savir, Built-In Jest for VLSI: Pseudo-
random Techniques, John Wiley &
Sons, New York, 1987. Provides
mafhematical treatment of BlST heo-
ry and practice.

Eichelberger, E.B., E. Lindbloom,
J.A. Waicukauski, and T.W. Wil-
liams, Strucfured logic Jesting, Pren-
tice-Hall, E n g l e w d Cliffs, N.J.,
1 991 . Provides detailed testing and
self-test techniques used in level-sen-
sitive scan design environment.

IEEE Trans. Industrial Electronics,
Special Issue on Testing, Vol. 36, No.
2, May 1989. Contains five tutorial
articles on testing, DFJ/ and BIS J.

1. Electronic Jesting: Theory and
Applications, Special Issue on Bound-
~ r y Scan, Vol. 2, No. 1, 1991. In-
cludes a tutorial on boundary scan
crnd articles on recent research results.

Yarmolik, V.N. and S.N. Demiden-
CO, Generation and Application of
Pseucbrancbrn Sequences br Random
Testing, John Wiley &Sons, Chichester!
JK, 1988. Provides mahematical the-
3ry of feedback shift registers as ap-
died in testing environment.

Vol. 34, Jan. 1988, pp. 64-69.
19. S.M. Reddy, K.K. Saluja, and M.G. Kar-

povsky, “A Data Compression Tech-
nique for Built-In Self-Test,’’ IEEE Trans.
Computers, Vol. C-37, No. 9, Sept. 1988,
pp. 1151-1 156; correction, Vol. C-38, No.
2, Feb. 1989, p. 320.

20. K. lwasaki and F. Arakawa, “An Analy-
sis of the Aliasing Probability of Multiple
Input Signature Registers in the Case of
a 2m-aty Symmetric Channel,” IEEE

testability, BIST, and fault-tolerant computing.
He has served as general chairman of the
1979 International Symposium on Fault-Toler-
ant Computing, as associate editor of IEEE
Transactions on Computers and IEEE Transac-
tions on Computer-Aided Design, and on the
program committees of IEEE conferences.
Kime is a fellow of the IEEE and a member of
the IEEE Computer Society.

. -
Trans. Computer-Aided Design, Vol.
CAD-9, No. 4, Apr. 1990, pp. 427-438.

21. D.K. Pradhan,S.K. Gupta, andM.G. Kar-
povsky, “Aliasing Probability for Multi- ’ ~

ple-Input Signature Analyzer,” IEEE i ~

Trans. Computers, Vol. C-39, No. 4, Apr. ~

1990, pp. 586-591.
22. S.Z. Hassan and E.J. McCluskey, “ln- a professor in the Depart-

creased Fault Coverage Through Multi- i ment of Electrical and Computer Engineer-
ple Signatures,” Proc. Int’l Symp. Fault- ing at the University of Wisconsin-Madison,
Tolerant Computing, IEEE CS Press, where he teaches logic design, computer
1984, pp. 354-359. architecture, microprocessor-based sys-

23. Y. Zorian and V.K. Agarwal, “Optimizing terns, and VU1 design and testing. Previous-
Error Masking in BIST by Output Data ~ ly, he worked at the University of Newcastle,
Modification,”J. Electronic Testing: The- ~ Australia. He has also held visiting and con-
ory and Applications, Vol. 1, Feb. 1990, sulting positions at the University of South-
pp. 59-72. ern California, the University of Iowa, and

24. K. Akiyama and K.K. Saluja, “A Method Hiroshima university. His research interests
of Reducing Aliasing in a Built-In Self- include design for testability, fault-tolerant
Test Environment,” IEEE Trans. Comput- computing, VLSl design, and computer ar-
er-AidedDesign, Vol. CAD-IO, No. 4, Apr. chitecture. He is an associate editor of the
1991, pp. 548553. Journal of Electronic Testing: Theory and A p

plications. Saluja received the BE from the
Vishwani D. Agrawal’s biographical , University of Roorkee, India, and the MS and
sketch and photo appear on page 28. the PhD in electrical and computer engi-

neering from the University of Iowa. He is a
member of the IEEE Computer Society.

ment of Electrical and Computer Engineering
at the University of Wisconsin-Madison,
where he has developed and taught a broad
range of computer engineering courses. His
research interests include testing, design for

Send correspondence about this article to
Vishwani D. Agrawal, AT&T Bell Laboratc-
ries, 600 Mountain Ave., Room 2C476,
Murray Hill, NJ 07974; email: vaoresearch.
att.com.

82 IEEE DESIGN & TEST OF COMPUTERS

http://att.com

