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Abstract—Imbalance between state of charge (SoC) of cells in
battery packs can cause numerous issues, including reduction of
usable capacity level, degradation of performance, and shortening
of lifetime. Successful approaches to mitigate such issues employ
cell balancing techniques. Building on our preliminary results,
in this paper, we expand our novel cell balancing technique
to larger battery packs to investigate scalability aspects and to
explore additional machine learning (ML) models that we employ
in the proposed cell balancing algorithm. More specifically, we
adopt a divide-and-conquer approach, in which the battery
pack is divided into smaller partitions to which we apply
the proposed ML based cell balancing. Extensive simulation
experiments conducted on a 24 cells battery pack demonstrate
good scalability and improved battery runtime achieved with the
proposed balancing approach.

Index Terms—battery cell balancing, machine learning, neural
network, reconfigurable battery pack

I. INTRODUCTION AND PREVIOUS WORK

One of the main challenges for battery packs, such as those

used in electric vehicles (EVs), is related to the differences

that exist among battery cells. These slight variations (for

example, in terms of capacity, internal resistance, etc.) can

result in cells imbalance that tends to increase as the pack ages,

primarily due to variances in different operational conditions

[1]. In turn, cells imbalance restricts the charging and dis-

charging processes and limit the amount of usable energy per

charge, thereby decreasing the total runtime/driven-distance

per charge.

A popular approach to combat cells imbalance is to use cell

balancing techniques [2], which can be generally classified

into active and passive balancing as presented in [2], [3].

For example, the study in [2] proposed a model-predictive-

controller (MPC) for active cell balancing. Passive balancing is

employed by the study in [3], which uses an iterative algorithm

that progressively reduces the imbalance in small consecutive

steps by activating bleeding resistors. Machine learning has

recently been used too to design balancing algorithms [4]–[6].

In [4], a machine learning control algorithm is developed in

Matlab to insert/bypass cells and achieve balancing of both

cell SoC and temperature. In [5], several machine learning

algorithms (back propagation neural network (BPNN) and

long short-term memory (LSTM)) are proposed and reported

improved balancing time and optimal power loss management.

The study in [6] investigated a feedforward neural network

to distinguish between balanced and imbalanced Lithium-

ion battery strings. In our recent work [7], we proposed a

novel balancing technique that used a reconfigurable switching

network to periodically change the pack topology in a way that

achieves cell balancing.

In this paper, we extend our cell balancing technique from

[7] to larger battery packs. We are interested in: 1) to inves-

tigate scalability aspects of the technique and 2) to explore

additional ML models that we employ to predict the next

best pack topologies to switch to periodically. A key benefit

of deploying such an artificial intelligence (AI) approach

to battery pack reconfiguration is that the AI approach has

the ability to retrain the model using data collected from

the battery pack operation, without the necessity to make

adjustments to other models, such as equivalent circuit models

used in traditional approaches.

II. RECONFIGURABLE BATTERY PACK ARCHITECTURE

Our proposed cell balancing algorithm is presented in the

context of an assumed reconfigurable battery pack structure

or architecture. The architecture is inspired by the work in

[8], where a reconfigurable network of switches was used in

photovoltaic (PV) arrays to reconfigure them to address partial

shading issues. We adopted that reconfigurable network of

switches and applied it in the context of battery packs - where

we reconfigure the switches to implement different topologies

and address cells imbalance issues [7]. The idea is to associate

a set of three switches (SPT,i, SPB,i and SS,i) with each cell

in the pack. The switches then can be configured to create

combinations of series-parallel connections of all the cells to

form various topologies with arbitrary number of rows and

columns on each row.

In this paper, we further modify the network of switches

by applying it individually to partitions of the battery pack,

as illustrated in Fig 1.a, where the battery pack is split into

two equal partitions indicated as Module 1 and Module 2.

In this way, we effectively implement a divide-and-conquer

approach to deal with the exponential increase in the number

of total different topologies that can be created for packs

with increasing numbers of cells. In other words, instead of

applying our previous balancing technique [7] to the overall

pack, we first split the pack into partitions with equal number

of cells and then apply the balancing technique to each

partition separately. In this way, we address the challenge

of scalability. An added benefit of this approach is that the





Algorithm: Dataset Generation based on Pareto Optimality

1: In: Reconfigurable module architecture, workload
2: Out: Dataset for training and testing ML model
3: for rangeu ← [0.3 : 0.15 : 0.9] do
4: for j ← 1 to N do // N: number of topologies
5: for i← 1 to M do // M: 400 simulations
6: Configure battery module to initial topology j
7: Randomly select initial SoC from rangeu
8: Randomly init. cells params. // sample Gaussian distr.
9: for k ← 1 to N do

10: Configure battery module to next topology k
11: Run simulation for the next control period
12: Record costs by eqs. (1) and (2)
13: Identify Pareto Frontier (PF)
14: Find best next topology from PF with eq. (3)
15: Record new datapoint: (Input features, Label),
16: Where: Input features: end SoC vals., j, statistics
17: Where: Label: next best topology index
18: end for
19: end for
20: end for
21: end for

Fig. 4. Pseudocode of the simulation process used to generate datasets.

which if any of the cells reaches an SoC of 10% or less, then

the pack discharging is stopped and the simulation ends. Note

that the value of 10% is chosen arbitrarily, but intentionally

lower in order to push the investigation of the proposed

approach to the limits. This value can be easily changed

inside the simulation tool by the user to other desired values.

Such values can be anywhere between 5-50% that have been

discussed online [9]–[12], reported by Tesla users, or used in

BMW i3 REX, Mitsubishi Outlander PHEV, or recommended

in previous studies [13]–[15].

The simulation is an iterative process, where each iteration

simulates the duration of a control period or epoch. The two

modules of the pack are initialized first; then, the simulation

progresses in control periods. At the end of each control period

the developed ML model (discussed later) is used to indicate

which module topology should be used in the next control

period, for each of the two modules of the pack. Note that the

same ML model is used for inference of next best topology

in both modules. The periodic reconfiguration is such that the

cells balance is preserved as best as possible and the SoC

runaway is constrained within ranges or spans that will allow

for the discharging process to last longer - by delaying as

much as possible for any of the cells SoC to reach first 10%.

B. Generation of Datasets Used for Model Training

At the core of the proposed balancing algorithm lies the

ML model used to make predictions at the end of each control

period about which specific pack topology to possibly switch

to (via network reconfiguration) in the next control period.

These predictions are done for each of the two modules of the

battery pack. To develop such ML models however we need

training data, which is not readily available anywhere. This

is perhaps the biggest challenge of the approach presented in

this paper.

To address this challenge, we developed our simulation tool

with features and running modes that allow us to generate the

datasets we need for ML model development and training.

More specifically, the simulation tool can be used to setup

multiple simulations at the end of each control period - such

that what-if explorations are conducted with the goal of identi-

fying what would be the best topology to reconfigure the pack

to for the next control period, given the current status of the

pack. The quality of the possible candidate topologies (tried

during these multiple simulations) is evaluated numerically by

calculating a cost function. The cost function combines two

cost components, denoted as C1 and C2: 1) the inverse of the

summation of battery cells SoC values, and 2) the range or

span of all SoC values, as the difference between the maximum

and minimum SoC values among all cells.

C1 = 1/

n
∑

i=1

SoCi (1)

C2 = SoCmax
diff = max

i∈[n]
SoCi − min

i∈[n]
SoCi (2)

where we define [n] = {1, 2, .., n} with n being the number

of cells in the battery pack.

Note that the smaller the values of these cost components

the better is the balancing among all cells in the pack. In fact,

the two cost components define a two dimensional solution

search space, where each possible topology (out of say a total

of N topologies) that the battery pack can be reconfigured to

represents a solution point. In such a space, there are usually

multiple best solution points - and those form what is called

the Pareto frontier [16]. An example of such a Pareto frontier

is shown in Fig. 3. In our simulations, we identify the next

best pack topology from the Pareto frontier - the one that is

the closest to the (0,0) coordinates in the space. The closeness

is calculated as the Euclidean distance:

d = argmin
k

√

(Ck
1 )

2
+ (Ck

2 )
2

(3)

The total number of possible topologies N that are eval-

uated at the end of each control period during the simula-

tion instrumented for dataset generation can quickly increase

exponentially with the number of cells considered. That is

because the total number of parallel-series connections (as

that in Fig. 1.b) increases with n, the number of cells. To

limit the simulation runtime for dataset generation purposes

and also because many topologies are anyway not useful (e.g.,

all cells in series, or all cells in parallel), we restrict N = 10
to a small number of topologies that use 4, 5, and 6 rows

only. The simulation process for dataset generation is further

summarized with the help of the pseudocode in Fig. 4. Eeach

topology is simulated 400 times, starting from current states

given by different initial values of cell SoCs within the range

30-90% with a step of 15%. Therefore, the dataset generated

will contain 400x5x10=20,000 datapoints.
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