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Abstract—Imbalance between state of charge (SoC) of cells in
battery packs can cause numerous issues, including reduction of
usable capacity level, degradation of performance, and shortening
of lifetime. Successful approaches to mitigate such issues employ
cell balancing techniques. Building on our preliminary results,
in this paper, we expand our novel cell balancing technique
to larger battery packs to investigate scalability aspects and to
explore additional machine learning (ML) models that we employ
in the proposed cell balancing algorithm. More specifically, we
adopt a divide-and-conquer approach, in which the battery
pack is divided into smaller partitions to which we apply
the proposed ML based cell balancing. Extensive simulation
experiments conducted on a 24 cells battery pack demonstrate
good scalability and improved battery runtime achieved with the
proposed balancing approach.

Index Terms—Dbattery cell balancing, machine learning, neural
network, reconfigurable battery pack

I. INTRODUCTION AND PREVIOUS WORK

One of the main challenges for battery packs, such as those
used in electric vehicles (EVs), is related to the differences
that exist among battery cells. These slight variations (for
example, in terms of capacity, internal resistance, etc.) can
result in cells imbalance that tends to increase as the pack ages,
primarily due to variances in different operational conditions
[1]. In turn, cells imbalance restricts the charging and dis-
charging processes and limit the amount of usable energy per
charge, thereby decreasing the total runtime/driven-distance
per charge.

A popular approach to combat cells imbalance is to use cell
balancing techniques [2], which can be generally classified
into active and passive balancing as presented in [2], [3].
For example, the study in [2] proposed a model-predictive-
controller (MPC) for active cell balancing. Passive balancing is
employed by the study in [3], which uses an iterative algorithm
that progressively reduces the imbalance in small consecutive
steps by activating bleeding resistors. Machine learning has
recently been used too to design balancing algorithms [4]-[6].
In [4], a machine learning control algorithm is developed in
Matlab to insert/bypass cells and achieve balancing of both
cell SoC and temperature. In [5], several machine learning
algorithms (back propagation neural network (BPNN) and
long short-term memory (LSTM)) are proposed and reported
improved balancing time and optimal power loss management.
The study in [6] investigated a feedforward neural network
to distinguish between balanced and imbalanced Lithium-

ion battery strings. In our recent work [7], we proposed a
novel balancing technique that used a reconfigurable switching
network to periodically change the pack topology in a way that
achieves cell balancing.

In this paper, we extend our cell balancing technique from
[7] to larger battery packs. We are interested in: 1) to inves-
tigate scalability aspects of the technique and 2) to explore
additional ML models that we employ to predict the next
best pack topologies to switch to periodically. A key benefit
of deploying such an artificial intelligence (AI) approach
to battery pack reconfiguration is that the Al approach has
the ability to retrain the model using data collected from
the battery pack operation, without the necessity to make
adjustments to other models, such as equivalent circuit models
used in traditional approaches.

II. RECONFIGURABLE BATTERY PACK ARCHITECTURE

Our proposed cell balancing algorithm is presented in the
context of an assumed reconfigurable battery pack structure
or architecture. The architecture is inspired by the work in
[8], where a reconfigurable network of switches was used in
photovoltaic (PV) arrays to reconfigure them to address partial
shading issues. We adopted that reconfigurable network of
switches and applied it in the context of battery packs - where
we reconfigure the switches to implement different topologies
and address cells imbalance issues [7]. The idea is to associate
a set of three switches (Sprs, Spp,; and Sg ;) with each cell
in the pack. The switches then can be configured to create
combinations of series-parallel connections of all the cells to
form various topologies with arbitrary number of rows and
columns on each row.

In this paper, we further modify the network of switches
by applying it individually to partitions of the battery pack,
as illustrated in Fig 1.a, where the battery pack is split into
two equal partitions indicated as Module 1 and Module 2.
In this way, we effectively implement a divide-and-conquer
approach to deal with the exponential increase in the number
of total different topologies that can be created for packs
with increasing numbers of cells. In other words, instead of
applying our previous balancing technique [7] to the overall
pack, we first split the pack into partitions with equal number
of cells and then apply the balancing technique to each
partition separately. In this way, we address the challenge
of scalability. An added benefit of this approach is that the
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Fig. 1. (a) The reconfigurable battery pack architecture studied in this paper
has 24 cells split into two separate modules, with 12 cells in each module.
Modules are connected in series. (b) An example of an actual battery pack
topology: module 1 with a [2,5,3,2] structure and module 2 with a [2,2,5,3]
structure.

same Al model that is developed for one of the partitions is
deployed for all other partitions, without the need to retrain the
model. Hence, this scalable approach is efficient too. Further
details will be provided in the next section. Fig. 1.b shows
an example of a pack topology, where the first module has a
structure defined as [2,5,3,2] and 2nd module has a [2,2,5,3]
structure. This is achieved by configuring appropriately the
on/off status of the reconfigurable switches in the battery pack.
The [2,5,3,2] structure defines a topology involving 12 cells
arranged as a connection of 4 rows in series. Each of the
four rows has a certain number of cells connected in parallel;
for example the first row has 2 cells in parallel and so on.
The output voltage level of the battery pack depends on how
many rows a module has. The first row in Fig. 1.b is module
1 ([2,5,3,2]) and the second row in Fig. 1.b is module 2
(12,2,5,3D).

III. PROPOSED BALANCING ALGORITHM
A. Algorithm Description

The flowchart of the proposed cell balancing algorithm is
shown in Fig. 2. This is illustrated in the context of the
simulation tool (discussed later), which is used as a testing
means as well. The balancing algorithm is presented for a
discharging process - captured by one full simulation - during
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Fig. 2. Flowchart of the proposed balancing algorithm; topology switching
via reconfiguration is done periodically, with a control period of 5 minutes.
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Fig. 3. Example of Pareto frontier in the space defined by the cost function
components C7 and Co defined by eqs. 2 and 1.



Algorithm: Dataset Generation based on Pareto Optimality
1: In: Reconfigurable module architecture, workload
2: Out: Dataset for training and testing ML model
3: for range, < [0.3:0.15:0.9] do
4 for j <~ 1 to N do // N: number of topologies
5 for i < 1 to M do // M: 400 simulations
6: Configure battery module to initial topology j
7.
8

Randomly select initial SoC from range,,
: Randomly init. cells params. // sample Gaussian distr.
9: for k£ < 1 to N do

10: Configure battery module to next topology k
11: Run simulation for the next control period

12: Record costs by egs. (1) and (2)

13: Identify Pareto Frontier (PF)

14: Find best next topology from PF with eq. (3)
15: Record new datapoint: (Input features, Label),
16: Where: Input features: end SoC vals., j, statistics
17: Where: Label: next best topology index

18: end for

19: end for

20: end for

21: end for

Fig. 4. Pseudocode of the simulation process used to generate datasets.

which if any of the cells reaches an SoC of 10% or less, then
the pack discharging is stopped and the simulation ends. Note
that the value of 10% is chosen arbitrarily, but intentionally
lower in order to push the investigation of the proposed
approach to the limits. This value can be easily changed
inside the simulation tool by the user to other desired values.
Such values can be anywhere between 5-50% that have been
discussed online [9]-[12], reported by Tesla users, or used in
BMVW i3 REX, Mitsubishi Outlander PHEV, or recommended
in previous studies [13]-[15].

The simulation is an iterative process, where each iteration
simulates the duration of a control period or epoch. The two
modules of the pack are initialized first; then, the simulation
progresses in control periods. At the end of each control period
the developed ML model (discussed later) is used to indicate
which module topology should be used in the next control
period, for each of the two modules of the pack. Note that the
same ML model is used for inference of next best topology
in both modules. The periodic reconfiguration is such that the
cells balance is preserved as best as possible and the SoC
runaway is constrained within ranges or spans that will allow
for the discharging process to last longer - by delaying as
much as possible for any of the cells SoC to reach first 10%.

B. Generation of Datasets Used for Model Training

At the core of the proposed balancing algorithm lies the
ML model used to make predictions at the end of each control
period about which specific pack topology to possibly switch
to (via network reconfiguration) in the next control period.
These predictions are done for each of the two modules of the
battery pack. To develop such ML models however we need
training data, which is not readily available anywhere. This
is perhaps the biggest challenge of the approach presented in
this paper.

To address this challenge, we developed our simulation tool
with features and running modes that allow us to generate the
datasets we need for ML model development and training.
More specifically, the simulation tool can be used to setup
multiple simulations at the end of each control period - such
that what-if explorations are conducted with the goal of identi-
fying what would be the best topology to reconfigure the pack
to for the next control period, given the current status of the
pack. The quality of the possible candidate topologies (tried
during these multiple simulations) is evaluated numerically by
calculating a cost function. The cost function combines two
cost components, denoted as C7 and Cs: 1) the inverse of the
summation of battery cells SoC values, and 2) the range or
span of all SoC values, as the difference between the maximum
and minimum SoC values among all cells.

C1 =1/ SoC; (1)
i=1
Cy = SoCT%% = max SoC; — min SoC;
2 diff i€[n] i€[n] (2)

where we define [n] = {1,2,..,n} with n being the number
of cells in the battery pack.

Note that the smaller the values of these cost components
the better is the balancing among all cells in the pack. In fact,
the two cost components define a two dimensional solution
search space, where each possible topology (out of say a total
of N topologies) that the battery pack can be reconfigured to
represents a solution point. In such a space, there are usually
multiple best solution points - and those form what is called
the Pareto frontier [16]. An example of such a Pareto frontier
is shown in Fig. 3. In our simulations, we identify the next
best pack topology from the Pareto frontier - the one that is
the closest to the (0,0) coordinates in the space. The closeness
is calculated as the Euclidean distance:

d = argminy\/ (CF)* + (CF)? 3)
k

The total number of possible topologies N that are eval-
uated at the end of each control period during the simula-
tion instrumented for dataset generation can quickly increase
exponentially with the number of cells considered. That is
because the total number of parallel-series connections (as
that in Fig. 1.b) increases with n, the number of cells. To
limit the simulation runtime for dataset generation purposes
and also because many topologies are anyway not useful (e.g.,
all cells in series, or all cells in parallel), we restrict N = 10
to a small number of topologies that use 4, 5, and 6 rows
only. The simulation process for dataset generation is further
summarized with the help of the pseudocode in Fig. 4. Eeach
topology is simulated 400 times, starting from current states
given by different initial values of cell SoCs within the range
30-90% with a step of 15%. Therefore, the dataset generated
will contain 400x5x10=20,000 datapoints.



TABLE 1
LISTING OF ARCHITECTURAL PARAMETERS OF THE INVESTIGATED
MODELS.
[ Model ] Architectural Parameters |
NN layers input (19 neurons), hidden (128), output (10)
KNN n=4
SVM C = 5000, gamma = 0.0015
RF n_estimators = 500, max_depth = 7
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Fig. 5. Comparison of accuracy achieved with each of the four investigated
models.

C. Machine Learning Models

In this paper, we investigate several machine learning
models with the objective of identifying the one that pro-
vides the best performance for our application context. More
specifically, we looked at: neural network (NN), K-nearest
neighborhood (KN N), support vector machine (SVM), and
random forest (RF) models. The dataset generated as described
in the previous section is used to train and test these models
using a 60/40% split. The training time of each of the models is
restricted to be the same for all models for a fair comparison.
The main architectural parameters of the models are listed
in Table I. The results of the comparison of these models
is summarized in Fig. 5. Based on this investigation, we
concluded that the NN model was the best. Therefore, we
selected this model to use in the proposed cell balancing
algorithm. All the results presented in the remainder of this
paper are obtained using the NN model. Further training was
conducted using Categorical CrossEntropy as loss function,
optimizer Adam, and LearningRate of 0.00015.

IV. SIMULATION RESULTS

All experiments, including the dataset generation used for
model training, are conducted with a custom battery pack
simulation tool, which we developed for this purpose. The sim-
ulation tool integrates enhanced self-correcting (ESC) models
for battery cells whose SoC is estimated with extended Kalman
filtering (EKF) techniques. The tool has the ability to numer-
ically simulate any battery pack topology that results through
the reconfiguration process used by the balancing algorithm.
For a more detailed description of the simulation tool, please
see our recent work [7]. All simulations are started from initial
states for all cells that are generated randomly from within
reasonable or rational ranges - in order to mimic realistic

differences between cells. For example, initial values of cells
SoC are sampled from Gaussian distributions characterized by
a mean of 0.9 (representing 90%) and a 5% standard deviation.
The proposed balancing algorithm is tested for two types of
battery discharging workloads: 1) constant workload and 2)
combination of multiple urban dynamo-meter drive schedule
(UDDS) workload. Each simulation experiment is stopped
when any of the cells SoC reaches the lower limit of 10%.
The simulation results for the constant workload case are
presented in Fig. 6. Fig. 6.a shows the variation of cells
SoC for the battery architecture that we use as reference
for comparison. The reference architecture includes the 24
cells split into two partitions or modules, where each has
topologies [2,5,3,2] and [2,2,5,3]. These two fixed topologies
are selected because they are the top two topologies that
were found to be preferred by the ML model as the next
best topology during dataset generation and model training. In
other words, if the battery pack topology is to be kept fixed,
then, these two topologies are the best at optimizing the two
cost components from eqgs. (1) and (2). Fig. 6.b shows the
variation of cells SoC when the reconfigurable battery pack
discussed in this paper has its topology changed periodically
(every 300 sec or 5 min) as dictated by the proposed balancing
algorithm. In these figures, x-axis represents time in seconds
(i.e., drive time of an EV) and y-axis represents the SoC as
a percentage, but normalized to a range from 0 to 1. For a
correct comparison, the initial starting values of all cells SoCs
(generated by sampling the distributions discussed earlier)
are exactly the same in both simulations, the reference and
proposed cases. Comparing the two plots from Fig. 6, we find
that the battery runtime is improved from 16,500 sec (reference
case) to 23,400 sec (proposed balancing); this represents an
improvement of 41.8%. As expected, the SoCs span/range at
the stopping time is decreased from 0.480 to 0.076 due to the
balancing, which makes for all SoCs values to stay clustered
together as the battery pack is discharged more uniformly.
The simulation results for the UD DS workload case are
presented in Fig. 7. Comparing the two plots, we again find
that the battery runtime is improved from 25,200 sec to 35,700
sec, which represents an improvement of 41.7%. Similarly,
the SoCs span/range at the stopping time is decreased from
0.485 to 0.077 due to the balancing. Finally, Fig. 8 presents
a summary of the above comparisons. It shows how battery
runtime and cells SoC span/range improved in both above
simulation experiments. We note that these results are better
than those reported recently in [7] and they suggest that the
approach presented in this paper - of divide at pack level and
conquer locally - is a good and scalable strategy to deploy
reconfigurable network switches and balancing algorithms.

V. CONCLUSION

We presented a new SoC balancing algorithm for recon-
figurable battery packs. The main contributions of this pa-
per include: 1) To deal with the larger number of battery
cells considered, we presented a divide-and-conquer approach
where the pack is divided into smaller partitions to which
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Fig. 6. Constant workload case: (a) Variation of cells SoC for the reference
battery pack fixed topology formed by two module: [2, 5, 3,2] and [2, 2, 5, 3].
(b) Variation of cells SoC when the proposed cell balancing algorithm is used.
SoC values are normalized to range [0,1].

we apply the proposed neural network based cell balanc-
ing. 2) We investigated several machine learning models to
identify the one that can provide the best results; we found
that neural networks were the best. 3) To test the proposed
balancing algorithm, we conducted simulation experiments
with a custom simulation tool on a battery pack with 24 cells.
Simulation results conducted with both constant and urban
dynamo-meter drive schedule workloads demonstrated that the
battery runtime can be improved with up to 41%.
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