
DUCT: Dynamic Unified Carbon Modeling Tool for
Datacenter Scheduling

Wenkai Guan1, Zerui Lyu1, and Cristinel Ababei2
1Division of Science and Mathematics, University of Minnesota, Morris

2Department of Electrical and Computer Engineering, Marquette University
Email: {guan0210,lv000013}@morris.umn.edu, cristinel.ababei@marquette.edu

Abstract—Environmental sustainability in computing has
drawn significant attention in the research community in recent
years. There is an increasing demand-supply gap in computing,
and the rise in computing demand incurs environmental over-
heads. To address the problem of increasing carbon emissions
embodied into the manufacture and then use of computing
systems, we present a dynamic unified carbon modeling tool
(DUCT), which allows us to estimate at run-time (i.e., application
scheduling) the embodied carbon emissions during datacenter
operation. This in turn, allows to effectively include carbon
emissions as an optimization objective, in addition to the tra-
ditional performance and energy efficiency objectives during job
scheduling optimization. The proposed DUCT tool is integrated
with a state-of-the-art scheduling algorithm. Simulation experi-
ments on a real in-house heterogeneous computer cluster uncover
significant differences in the actual carbon emission estimations
by DUCT tool for several Splash-2 benchmarks, compared to
when the estimations are made statically, at design time by
existing tools. Therefore, the proposed DUCT tool can offer a
more accurate run-time estimator of carbon emissions.

Index Terms—Embodied carbon emissions; carbon modeling;
datacenter; scheduling algorithm;

I. INTRODUCTION

Carbon emissions (i.e., CO2) has become one of the most
important challenges for computing systems. There is an in-
creasing gap between the rate at which the performance of pro-
cessors improves and the lower rate at which carbon emissions
are reduced. For example, datacenters used an estimated 460
terawatt hours (TWh) of electricity in 2022, representing 2%
of total global electricity demand, contributing around 3% to
all global carbon emissions, and thereby exceeding emissions
from commercial flights (about 2.4%) and other activities that
fuel our global economy [1], [2]. Thus, the computing research
community now faces the important challenge of reducing
carbon emissions in all computing systems, but especially
in datacenters that have increased in number and in types
of applications that they run in the AI era, such as large
power-hungry and computationally expensive AI models [3].
Therefore, we urgently need new approaches to designing and
operating computing systems to optimize holistically carbon
emissions. This paper addresses that need by proposing a
Dynamic Unified Carbon modeling Tool (DUCT) to quantify
carbon emissions during datacenter operation. It demonstrates
an opportunity to significantly reduce embodied carbon emis-
sions during datacenter job scheduling.

II. RELATED WORK AND MOTIVATION

A. Related Work

In this section, we review previous literature on carbon
modeling at the processor, cloud, and hierarchical (cross-layer)
levels. In the category of processor-level carbon modeling
approaches, most of the previous studies focused on the goal
of sustainability at the design stage. The researchers in [4]
proposed 3D-Carbon to quantify the carbon emissions of
3D and 2.5D integrated circuits during their life cycle. By
considering the entire life-cycle of integrated circuits (ICs),
the work in [5], [6] laid the foundation for holistic ICs
level sustainability studies, which aim at identifying pathways
towards truly green computing. The study in [7] analyzed
the sustainability benefits of chiplet-based design choices by
considering scaling, yields, design complexity, and advanced
packaging techniques. The work in [8] proposed a carbon
model under data uncertainty to assess processor sustainability.

In the category of cloud-level carbon modeling approaches,
the study in [9] quantified carbon emissions of computer
systems and found that most emissions related to datacenter
equipment come from hardware manufacturing - that is com-
monly called embodied carbon. The work in [10] proposed
a tool to balance the trade-off between embodied carbon and
operational carbon for carbon-free datacenters. Their work is
vital to reducing carbon emissions in datacenters at the design
stage. The study in [11] introduced Google’s system for global
Carbon-Intelligent Computer Management to minimize carbon
footprint and power cost. The study in [12] proposed carbon-
aware approaches to reduce carbon emissions in datacenters.
The work in [13] proposed to reuse unwanted smartphones as
“junkyard computers” to reduce carbon emission due to new
manufacturing. The study in [14], [15] co-optimized carbon
emissions, water footprint, and energy cost of geo-distributed
datacenters. The work in [16] proposed a carbon-aware sched-
uler to quantify the operational carbon, performance, and
cost trade-off in the cloud. This work provides critical trade-
off analysis, as it focuses on operational energy and carbon
emissions.

In the category of hierarchical carbon modeling approaches,
the work in [18] proposed ACT - an architectural carbon
emission modeling framework to quantify embodied and op-
erational carbon emissions at the design space exploration
stage. The importance of quantifying and reducing the carbon

TABLE I
REVIEW OF CARBON MODELING AT THE PROCESSOR, CLOUD, AND

HIERARCHICAL (CROSS-LAYER) LEVELS.

Methods Level Stage Embodied Operational Heterogeneity Interference
[4] processor design yes yes yes
[5], [6] processor design yes yes yes
[7] processor design yes yes yes
[8] processor design yes yes yes
[10] cloud design yes yes
[11], [12], [16] cloud run-time yes yes
[13] cloud design yes yes yes yes
[14], [15] cloud run-time yes yes yes
[18] hierarchical design yes yes yes
DUCT hierarchical run-time yes yes yes yes

footprint at every layer of the computing stack and across
the life cycle of computing was again highlighted later in
[17]. Our work in this paper is in this category. Building on
these existing studies from [9], [4], [18], we further improve
hierarchical carbon modeling by formalizing dynamic carbon
modeling at run-time (i.e., scheduling), by also considering
heterogeneity and interference factors that affect application’s
execution time, and by investigating carbon emissions as an
additional objective during job scheduling in datacenters.

B. Motivation

The summary in Table I indicates that (i) we have excellent
work at processor and cloud level approaches to quantify and
reduce carbon emissions; (ii) we have only begun work on hi-
erarchical carbon modeling approaches to quantify and reduce
carbon across all layers of the computing stack, especially at
run-time. Our work is in this space; it presents a hierarchical
(server and datacenter) dynamic unified carbon modeling tool
(i.e., DUCT) that also considers heterogeneity and interference
while modeling embodied and operational carbon at run-time.
We are extending the basic framework introduced in [18] by
applying it at the scheduling stage and using it to directly
impact how job scheduling is done such that carbon emission
is reduced. Furthermore, we adopt the carbon modeling idea
from [18] and the heterogeneity and interference modeling
ideas from [19], [20] and combine them with our new ideas on
collaborative filtering based carbon prediction and D-Choices
greedy scheduling [21], [22]. This paper is built on top of the
previous work but differs from the previous one.

To motivate the need for DUCT, we show in Fig. 1 the
carbon emission estimation done during the design stage by
ACT and based on profiled execution and done during the
scheduling stage by DUCT on the benchmark barnes from
Splash-2 suite [23]. We can notice a significant difference
between the two estimations, which emphasizes the need for
a tool like DUCT to be used at run-time for more accurate
estimations. To this end, the novelty of the proposed run-time
carbon modeling framework lies in the following: 1) modeling
of both embodied and operational carbon at the scheduling
stage, 2) modeling also heterogeneity and interference in
datacenters, and 3) applying these models during scheduling
with the objective of reducing carbon emissions. The proposed
unified carbon modeling represents a paradigm shift from
the current datacenter scheduling work that focuses on op-
timizing energy efficiency toward embracing more sustainable

methods in optimizing carbon emissions together with energy
efficiency.

3.83 3.72

0.89 1.51

0

1

2

3

4

5

6

ACT DUCT

C
a
rb

o
n

 e
m

is
s
io

n
 (

 m
g

 C
O
₂）

operational co₂ embodied co₂

4.72
5.23 Rising 10.81%

carbon emission

Fig. 1. Illustration of the difference in carbon emission estimation by
ACT at design stage and by DUCT at runt-time scheduling stage for a
representation benchmark, barnes from Splash-2 suite. The difference in
application execution time at the scheduling stage from the profiled execution
time during the design stage is the main reason for the gap in carbon emission
estimation.

III. DYNAMIC UNIFIED CARBON MODELING

The study in [18] proposed the ACT framework and laid the
foundation for static (design time) unified carbon modeling.
We develop our framework starting from ACT by applying
it to capture the total carbon emissions - including embodied
carbon and operational carbon - in the context of datacenter
scheduling. We define scheduling as allocating applications to
servers in datacenters and allocating tasks to cores in multicore
processors on servers. Servers can be operated in different
configurations defined by different Voltage/Frequency (V/F)
levels, which are set dynamically by Dynamic Voltage and
Frequency Scaling (DVFS) techniques.

The proposed dynamic carbon modeling tool, DUCT, cap-
tures both embodied and operational carbon as illustrated by
the shaded boxes in Fig. 2. DUCT considers embodied carbon
similarly to ACT, but, it is different from ACT in that it con-
siders also carbon emissions in the run-time/scheduling stage
(shaded blocks in Fig. 2). During scheduling optimization, the
run-time carbon emissions are impacted by: 1) applications’
execution time, which is affected by scheduling on different
heterogeneous servers; this directly influences the run-time
embodied carbon and 2) different server configurations defined
by different voltage/frequency (V/F) settings as controlled
dynamically by DVFS techniques; this directly influences the
operational carbon.

In presenting details of the proposed dynamic unified carbon
modeling framework, we will make use of various variables
and parameters, which for clarity are summarized in Table
II. We present our discussion in the context of a datacenter
with a total number of N servers, a number of SN server

Dynamic Unified Carbon Modeling

For Datacenter Scheduling

Operational carbon of

an application that runs

on a server

Carbon

intensity

Dynamic

power

Leakage

power

Total

capacity

load

Voltage/

Frequency

level

App run-time

on the server

configuration

Embodied carbon of an

application that runs on a

server

App run-

time on the

server

Server

lifetime

Embodied carbon to

build the server

scheduled to run an app

Fig. 2. Proposed dynamic unified carbon modeling tool. It accounts for both operational carbon and embodied carbon. It is build on top of ACT [18]
but with the differences in (i) using application’s execution time at the scheduling stage that maybe affected by the interference (contest in resources); this
directly affects the run-time embodied carbon. (ii) using different server configurations defined by different voltage/frequency settings as controlled by DVFS
techniques; this directly affects the operational carbon. We use shaded blocks to highlight these difference compared to ACT.

TABLE II
NOTATIONS AND DEFINITIONS USED IN THIS PAPER.

Parameter Description
N total number of servers
SN total number of server configurations
M number of input applications
S() cluster and node levels scheduling functions
Ctotal total carbon emission due to scheduling S()
C(m, i) carbon emission of application m on server i
xm,i indicator, 1 if application m runs on server i and 0 otherwise
m an application
E(m, i) energy consumption of application m on server i
CIuse carbon intensity during use phase
E(m, i)leakage leakage power
E(m, i)dynamic dynamic power
Si number of server configurations (e.g., V/F levels) for server i
Em,j energy usage of application m on server configuration j
ym,j percentage of the execution time
C total capacitive load
V voltage, usually in-pair with frequency
F frequency, usually in-pair with voltage
Tm,j execution time of application m on server configuration j
T (m, i) application run-time on server i
LT (i) server lifetime
C(i)embodied,overall overall embodied carbon needed to build server i
C(i)embodied embodied carbon of different components in server i

configurations, and a number M of input applications that
need to be scheduled to these servers. Please note that a given
physical server has several configurations, given by the total
number of different V/F combinations supported on the given
server. The scheduling algorithm that we use is based on the
previous work [21], [22]. It is a unified scheduling approach
that schedules applications to servers at the datacenter level
and threads to cores at the node level; such a scheduling
solution is denoted as S() in this work. The total carbon
emission Ctotal of the scheduling function S() is formulated
as follows:

Ctotal =

M∑
m=1

N∑
i=1

C(m, i) · xm,i (1)

where C(m, i) defines the carbon emission of application m

when it runs on server i. xm,i is an indicator variable that
is 1 if application m runs on server i and 0 otherwise (we
assume no cross-server migration in this paper). We consider
both embodied carbon and operational carbon when estimating
C(m, i), using the following equation:

C(m, i) = C(m, i)embodied + C(m, i)operational (2)

The operational carbon emission of an application m when
it runs on server i is computed as the product between the
energy consumed E(m, i) and the carbon intensity during the
use phase, CIuse. We adopt the concept of carbon intensity
(to measure the equal grams of carbon dioxide per kWh
of electricity) from the ACT framework [18], as it enables
system developers to consider different energy sources (e.g.,
renewable energy with smaller CIuse values or coal-based
energy with larger CIuse values). The expression used for
calculating the operational carbon emission is thus:

C(m, i)operational = E(m, i)× CIuse (3)

The energy usage E(m, i) includes two main components
that correspond to the dynamic and leakage power consump-
tion components, which depend on the V/F settings at any
particular time as dictated by the DVFS technique:

E(m, i) = E(m, i)dynamic + E(m, i)leakage (4)

The dynamic component, E(m, i)dynamic, is estimated with
the following expression:

E(m, i)dynamic =

Si∑
j=1

Em,j · ym,j (5)

where Em,j defines the energy usage of application m when
it runs on server configuration j, out of Si total configurations
for server i. ym,j represents the percentage of the execution

time (i.e., value in [0, 1] range) when application m runs on
server configuration j (we allow thread migration within a
given server). The expression to calculate Em,j is:

Em,j = P × Tm,j (6)

P = 1/2× C × V 2 × F (7)

where C is the total capacitive load, V /F represent the voltage
and frequency at which the server is configured, and Tm,j is
the execution time of application m on the specific server
configuration j.

The second main component in eq. (1) is the embodied car-
bon emission, C(m, i)embodied, which is estimated as follows:

C(m, i)embodied = C(i)embodied,overall ×
T (m, i)

LT (i)
(8)

where, similarly to the ACT framework [18], C(m, i)embodied

uses the ratio between the application’s execution time on
server i and the server lifetime LT (i) (assumed fixed by
the ACT framework). However, the key difference in our
carbon model is that we use application’s execution time at
the scheduling stage, which maybe affected by the interference
(contest in resources) based on different scheduling function
S(), and thus influence the embodied carbon C(m, i)embodied.
For example, let’s assume a scheduling function that allocates
too many applications to a high-performance server, and some
of the applications’ execution time at the scheduling stage
(focused by our carbon model) become longer than their exe-
cution time profiled individually at the design stage (focused
by ACT) due to limited computational and memory resource.
Under this circumstance, our carbon model can capture the
changes in embodied carbon caused by scheduling functions
and application’s execution time at the scheduling stage.

In Eq. 8, C(i)embodied,overall represents the overall em-
bodied carbon needed to build/manufacture that server. ACT
framework quantifies it on a per-component level for: appli-
cation processors (SoC), memory (DRAM), and storage (SSD
and HDD) components. ACT does not consider PCB, battery,
etc. due to lack of data currently. In this work, we adopt
ACT framework’s embodied carbon equations to quantify
the overall embodied carbon C(i)embodied,overall for SoC,
DRAM, SSD, and HDD.

IV. REDUCTION OF CARBON EMISSION DURING
SCHEDULING OPTIMIZATION

Previous sections answered the questions of why we need
a dynamic unified carbon modeling tool and how to derive
actual estimations based on such a model. This section aims
to answer the question of how a dynamic unified carbon
modeling tool benefits the datacenter scheduling. Based on
the DUCT model presented in Section III, we here propose
a hierarchical theoretical datacenter scheduling algorithm,
which directly considers reduction of carbon emission as an
optimization goal. This scheduling algorithm is developed by
modifying a state-of-the-art scheduling algorithm that was
presented in previous work by [21], [22]. The algorithm is a
unified hierarchical cluster-node scheduling approach, which

Algorithm 1: Datacenter-level scheduling algorithm.

1 Inputs: Incoming applications M
2 Outputs: Application-to-server scheduling
3 Function DATACENTER-LEVEL-SCHEDULING()
4 for m in M do
5 BenchmarkProfiling(m); // Fast online profiling
6 CarbonModeling(m); //Dynamic unified carbon

modeling
7 InterferenceModeling(m);
8 HeterogeneityModeling(m);
9 C = CarbonEmissionPrediction(m); //

Collaborative filtering based carbon prediction
10 E = EnergyPrediction(m); // Collaborative

filtering based energy prediction
11 I = InterferencePrediction(m); // Collaborative

filtering based interference prediction
12 H = HeterogeneityPrediction(m); //

Collaborative filtering based heterogeneity
prediction

13 CarbonAwareScheduling(C,E, I,H);
14 end
15 end

considers interference and server heterogeneity as a multi-
objective optimization approach. It combines application-
to-server (datacenter-level) and thread-to-core (server-level)
scheduling problems, which are solved with novel D-choices
greedy scheduling heuristics. In this paper, we extend that
scheduling algorithm to include reduction of carbon emissions
as an additional optimization objective. The proposed schedul-
ing algorithm has a global view in that the server-level schedul-
ing can influence the fast profiling results, which affect the
datacenter-level scheduling. Meanwhile, the datacenter-level
scheduling can enhance carbon reduction at the server-level
through allocating applications to servers that have available
lower embodied carbon.

Algorithm 1 listing describes the pseudocode of the
datacenter-level scheduling algorithm. The inputs into this
algorithm are the incoming applications, and the output
is the application-to-server scheduling. Carbon emission
is quantified by a new method CarbonModeling(m)
during the optimization process. This method uses
the models presented in Section III. We adopted the
BenchmarkProfiling(m), InterferenceModeling(m),
and HeterogeneityModeling(m) from [21], [22] to fast
profile benchmarks’ characteristics, which will be used
to model interference and heterogeneity. In addition, we
use collaborative filtering techniques to predict carbon
emission (represented as C), energy usage (denoted as E),
interference (represented as I), and heterogeneity (denoted
as H) of new incoming applications. The predictions are
used by CarbonAwareScheduling(C, E, I, H) to generate
application-to-server scheduling that aims to reduce carbon
emission along with energy consumption while guaranteeing

TABLE III
CHARACTERISTICS OF THE KUBERNETES CLUSTER.

Server Type Role GHz Cores SSD (GB) Mem(GB)
Intel i5-4590 master 3.30 4 5120 32
Intel i7-4790 worker 3.60 8 128 16
Intel i5-2500 worker 3.30 4 256 8
Intel i5-2500 worker 3.30 4 512 8

TABLE IV
INPUT PARAMETERS IN DUCT CARBON MODEL.

Parameters Values Descriptions
large_ssd 2794 GB (3 TB) main ssd
ssd 2048 GB (2 TB) secondary ssd
dram 8 GB memory size of each dram
carbon_intensity 380 380g CO2 per kWh in the USA
ssd_main_count 1 num. of main ssd
ssd_secondary_count 1 num. of secondary ssd
dram_count 4 num. of dram
cpu_count 4 num. of cores

applications’ performance needs. For more details on the
main scheduling algorithm, please see [21], [22].

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

In this section we first compare DUCT - the proposed
tool for dynamic unified carbon modeling and estimation of
carbon emission during datacenter operation - with ACT -
the tool from [18] that estimated carbon emissions during the
design stage. We conduct our experiments on a real in-house
cluster built with four heterogeneous computers. Table III
lists the specific characteristics of the in-house cluster testbed.
Furthermore, we integrated the DUCT tool into the Qin Sched-
uler [21], [22], which is configured to optimize energy-delay-
product and managed by the Kubernetes platform to distribute
the applications to servers. We used Kubernetes v.1.14.0 and
virtual networking layer flannel for communications. Because
modern datacenters mainly include computational and latency-
critical workloads, in our experiments, we use applications
from the Splash-2 benchmark suite; more specifically: barnes,
ocean_cp, water_nsq, water_sp, lu_ncb, and radix - which
represent computational workloads. We keep most of the
parameters inside the DUCT tool the same as ACT’s default
parameters corresponding to 28nm process technology node.
However, we changed several parameters - specifically, those
listed in Table IV - based on our particular cluster configura-
tions. We used the DUCT parameters in the master computer
as an example in Table IV.

B. DUCT Captures Increase in Carbon Emission at Schedul-
ing Stage

Here, we report the results from the first set of experiments:
comparing carbon emissions estimated by ACT and DUCT
tools. The results of our simulations are shown in Fig. 3,
which plots the carbon emissions quantified by the previous
work ACT tool (this is our base or reference for comparison)
and by the proposed DUCT tool - for the investigated Splash-
2 applications at the scheduling stage. The x-axis lists the
Splash-2 applications, and the y-axis represents the carbon

0

1

2

3

4

5

6

barnes ocean_cp water_nsq water_sp lu_ncb radix

C
a
rb

o
n
 e

m
is

s
io

n
 (

 m
g
 C

O
₂）

ACT(mg CO₂) DUCT(mg CO₂)

10.81%

11.3%

75.84%

63.58%

120.17%

145.54%

Fig. 3. Comparison of carbon emissions quantified by the proposed DUCT
and previous ACT tools, for Splash-2 application benchmarks.

TABLE V
EMBODIED AND OPERATIONAL CARBON QUANTIFIED BY DUCT AND

ACT FOR THE SPLASH-2 APPLICATIONS.

ACT (mg CO2) DUCT (mg CO2)
App Oper Emb Total Oper Emb Total

barnes, 3.83 0.89 4.72 3.72 1.51 5.23
ocean_cp 2.18 0.12 2.3 2.14 0.42 2.56
water_nsq 1.45 0.04 1.49 1.86 0.76 2.62
water_sp 2.92 0.21 3.13 4.29 0.83 5.12
lu_ncb 1.16 0.03 1.19 1.86 0.76 2.62
radix 1.76 0.37 2.13 3.72 1.51 5.23

emission in mg CO2. We find that DUCT tool calculates
an increase in carbon emission compared to ACT tool for
all application benchmarks. To investigate whether the carbon
increase is caused by embodied or operational carbon, Table
V lists a break-down of the embodied and operational carbon
emission for each of the studied applications. In this table,
Oper represents operational carbon and Emb denotes the
embodied carbon. It can be observed that embodied carbon
dominates the increase in carbon emission during the schedul-
ing stage.

This results can be explained as follows. First, ACT tool
quantifies the application’s carbon emission during the design
stage and profiles application’s execution time individually.
Then, DUCT quantifies the application’s carbon emission
during the scheduling stage, at run-time, and uses the appli-
cation’s execution time that is affected by interference (e.g.,
application’s contest due to limited computational and memory
resources); this execution time is longer and results into the
increased embodied carbon emission (according to Eq. 8). In
our experiments, we noticed that for some applications, the
operational carbon increased while for others it decreased. This
could be explained by the fact that the operational carbon is
affected by both the application’s execution time (increased
by interference) and by the different voltage/frequency pairs
(selected by Qin Scheduler). This interaction between the
impact of increased application execution time and selection
of lower voltage/frequency level pairs is the focus of our on-
going investigation and it will be discussed in our future work.

C. Optimization of Carbon-Performance-Energy Reduces
Carbon Emissions with Little Impact on Energy Usage and
Performance

In the second set of experiments, we implemented the
datacenter-level scheduling from the listing Algorithm 1,
which includes carbon emission as an additional optimization
objective. This scheduling algorithm does what we call the
carbon-performance-energy optimization scheduler. As a base
or reference for comparison, we use the default scheduling
algorithm from [21], [22], which focuses on optimizing the
energy-delay-product - we call that the performance-energy
optimization scheduler. We used the Kubernetes cluster de-
scribed in Table III as our testbed. Similarly to [21], [22],
as workloads, we used real-world applications from Splash-2
benchmark suite, randomly duplicated with equal likelihood
to generate 10 real-world application workloads for our small
cluster.

Our goal in these experiments is to compare the
carbon-performance-energy optimization scheduler with the
performance-energy optimization scheduler in order to in-
vestigate what is the impact of including carbon emission
as an additional objective during scheduling. During our
experiments, we collected job completion time, energy usage,
and carbon emissions. We report in Table VI the summary of
our results. We found that (i) carbon emission is reduced by
5.88%, but, at the expense of 3.91% increase in energy usage
and at no impact on job completion time; (ii) the carbon-
performance-energy optimization scheduler significantly re-
duced embodied carbon emissions (14.5%). This demonstrates
that there exists an untapped opportunity to significantly
reduce embodied carbon emissions at run-time via datacenter
scheduling. Exploiting this opportunity represents a paradigm
shift from optimizing energy efficiency alone to optimizing
energy efficiency together with carbon emissions via more
sustainable methods involving datacenter scheduling.

D. Discussion

Based on the experimental results presented above, we
note the following key differences between the previous work
ACT and the proposed DUCT tools: 1) DUCT can capture
application’s execution time that is affected by interference
during the scheduling stage; 2) DUCT can capture dynamic
energy reduction due to dynamic voltage and frequency scaling
(DVFS) for heterogeneous server configurations during the
scheduling stage. The former affects the embodied carbon and
both affect the operational carbon. The carbon-performance-
energy optimization scheduler, which integrates the DUCT
for carbon modeling, prefers scheduling jobs to servers with
much lower carbon (e.g., older servers with much lower
embodied carbon but still guarantee application’s performance
needs), but, at the cost of some increase in energy usage.
The significant differences in carbon emissions that we have
discovered in this paper highlight the need for tools like DUCT
to be considered in run-time optimizations in datacenters. In
essence, the proposed DUCT tool can complement the ACT
tool in that it can provide dynamic unified carbon modeling

employed at the scheduling stage in datacenters to enable the
estimation and optimization of carbon emissions along with
energy efficiency.

VI. CONCLUSION

We presented a unified carbon emission modeling frame-
work, which can be used as a tool to estimate dynamically the
total embodied carbon emissions during datacenter operation.
This framework allows us to directly include reduction of
carbon emissions as an objective during datacenter optimiza-
tion. More specifically, we employ the proposed framework
to modify application scheduling in datacenters so that carbon
emission is considered as an optimization objection in addition
to the traditional power and performance objectives. Simula-
tion experiments on using real-world applications on a custom
in-house heterogeneous cluster showed that carbon emissions
can be reduced while having little impact on energy usage and
performance. This paper demonstrated a research opportunity
to reduce carbon emissions through datacenter scheduling.

ACKNOWLEDGEMENT

We thank our anonymous reviewers for their constructive
feedback. We appreciate the help from the EIT 2024 general
co-chairs to make this paper possible.

REFERENCES

[1] IEA (2024), “Electricity 2024,” IEA, 2024. Available: https://www.iea.
org/reports/electricity-2024

[2] H. Lavi, “Measuring greenhouse gas emissions in data centres: the
environmental impact of cloud computing,” Climatiq, 2022.

[3] C.J. Wu et al., “Sustainable AI: Environmental Implications, Chal-
lenges and Opportunities,” MLSys, 2022.

[4] Y. Zhao et al., “3D-Carbon: An Analytical Carbon Modeling Tool for
3D and 2.5D Integrated Circuits," DAC, 2024.

[5] E. Brunvand et al., “Dark Silicon Considered Harmful: A Case for
Truly Green Computing," IGSC, 2018.

[6] D. K. Jr. et al., “GreenChip: A tool for evaluating holistic sustainability
of modern computing systems," Sustainable Computing: Informatics
and Systems, vol. 22, pp. 322-332, June 2019.

[7] C. C. Sudarshan et al., “ECO-CHIP: Estimation of Carbon Footprint
of Chiplet-based Architectures for Sustainable VLSI,” HPCA, 2024.

[8] L. Eeckhout, “FOCAL: A First-Order Carbon Model to Assess Pro-
cessor Sustainability,” ASPLOS, 2024.

[9] U. Gupta et al., “Chasing Carbon: The Elusive Environmental Footprint
of Computing,” HPCA, 2021.

[10] B. Acun et al., “Carbon Explorer: A Holistic Framework for Designing
Carbon Aware Datacenters," in ASPLOS, 2023.

[11] A. Radovanović et al., “Carbon-Aware Computing for Datacenters,"
IEEE Transactions on Power Systems, vol. 38, no. 1, 2023.

[12] L. Lin and A. A. Chien, “Adapting Datacenter Capacity for Greener
Datacenters and Grid," in e-Energy, 2023.

[13] J. Switzer et al., “Junkyard Computing: Repurposing Discarded Smart-
phones to Minimize Carbon," in ASPLOS, 2023.

[14] S. Qi et al., “SHIELD: Sustainable Hybrid Evolutionary Learning
Framework for Carbon, Wastewater, and Energy-Aware Data Center
Management," in IGSC, 2023.

[15] S. Qi et al., “MOSAIC: A Multi-Objective Optimization Framework
for Sustainable Datacenter Management," in HiPC, 2023.

[16] W. A. Hanafy et al., “Going Green for Less Green: Optimizing the
Cost of Reducing Cloud Carbon Emissions,” ASPLOS, 2024.

[17] T. Eilam, “Harnessing the Power of Specialization for Sustainable
Computing,” ASPLOS, 2024.

[18] U. Gupta et al., “ACT: designing sustainable computer systems with
an architectural carbon modeling tool," in ISCA, 2022.

[19] F. Romero et al., “Mage: Online and Interference-Aware Scheduling
for Multi-Scale Heterogeneous Systems,” PACT, 2018.

TABLE VI
THE COMPARISON BETWEEN CARBON-PERFORMANCE-ENERGY OPTIMIZATION AND PERFORMANCE-ENERGY OPTIMIZATION FOR 10 REAL-WORLD

APPLICATION WORKLOADS.

Carbon (mg CO2) Energy Usage (Joule) Job Completion Time (second)Operational Embodied Total
Performance-Energy Optimization 35.8 40.7 76.5 339.54 7
Carbon-Performance-Energy Optimization 37.2 34.8 72.0 352.25 7
Difference +3.91% -14.5% -5.88% +3.74% 0%

[20] C. Delimitrou et al., “Paragon: QoS-aware scheduling for heteroge-
neous datacenters,” ASPLOS, 2013.

[21] W. Guan and C. Ababei, “Qin: Unified Cross-layer Cluster-node
Scheduling for Heterogeneous Datacenters,” IEEE Trans. on Sustain-
able Computing, 2024.

[22] W. Guan and C. Ababei, “Unified cross-layer cluster-node scheduling
for heterogeneous datacenters,” IGSC, Oct. 24-27, 2022.

[23] S.C. Woo et al., “The SPLASH-2 programs: characterization and
methodological considerations,” ISCA, 1995.

[24] M.G. Moghaddam et al., “Dynamic Energy Management for Chip
Multi-processors Under Performance Constraints,” Microprocessors
and Microsystems, 2017.

[25] J. Leverich et al., “Reconciling High Server Utilization and Sub-
millisecond Quality-of-Service,” EuroSys, 2014.

