

Outline

- UART
- CAN
- I2C
- SPI

Basics

- This mode of communications is called asynchronous because the host and target share no time reference (no clock signal). Instead, temporal properties are encoded in the bit stream by the transmitter and must be decoded by the receiver.
- A commonly used device for encoding and decoding such asynchronous bit streams is a Universal Asynchronous Receiver/Transmitter (UART).

Outline

- UART
- CAN
- I2C
- SPI

CAN terminology

- Entities on the network are called nodes are not given specific addresses
- Messages themselves that have an identifier which also determines the messages' priority
- Nodes depending on their function transmit specific messages and look for specific message

CAN Node Requires:

- Host processor
 - The host processor decides what received messages mean and which messages it wants to transmit itself.
 - Sensors, actuators and control devices can be connected to the host processor.
- CAN controller (hardware with a synchronous clock)
 - Receiving: the CAN controller stores received bits serially from the bus until an entire message is available, which can then be fetched by the host processor (usually after the CAN controller has triggered an interrupt).
 - Sending: the host processor stores its transmit messages to a CAN controller, which transmits the bits serially onto the bus.
- Transceiver
 - Receiving: it adapts signal levels from the bus to levels that the CAN controller expects and has protective circuitry that protects the CAN controller.
 - Transmitting: it converts the transmit-bit signal received from the CAN controller into a signal that is sent onto the bus.

CAN message format									
SOF	MESSAGE ID	RTR CONTROL	DATA	CRC	ACK EOF				
•	Start of frame (SOF)								
•	Message Identifier (MID)								
	 the Lower the value the Higher the priority of the message 								
	 its length is eith 	er 11 or 29 bits long	depending on the s	tandard bein	ng used				
•	Remote Transmission Request (RTR)=0								
•	Control field (CONTROL)								
	 specifies the number of bytes of data to follow (0-8) 								
•	Data Field (DATA) length 0 to 8 bytes								
•	CRC field containing a fifteen bit cyclic redundancy check code								
•	Acknowledge field (ACK)								
	 an empty slot which will be filled by any and every node that receives the frame 								
	 it does NOT say one node on the 	that the node you in e whole network got	tended the data for it.	got it, just t	hat at least				
•	End of Frame (EOF)								

Data transfer from master to slave								
START ADDRESS	W	ACK	DATA	ACK	DATA	ACK	Р	
sent by ma.	ster /e							

Data transfer from slave to master								
START	ADDRESS	R	ACK	DATA	ACK	DATA	NACK P	
	sent by master							
	sent by slave							

Wii Nu	InChuck In	nternals	
Function	Hardware	Circuit board surface and mounting	
c	membrane switch	daughterboard, through- hole	
Z	membrane switch	daughterboard, through- hole	
Joystick X	axial potentiometer, 30KΩ	through-hole	
Joystick Y	axial potentiometer, 30KΩ	through-hole	
Accelerometer	ST 8XRJ 3L02AE 820 MLT	surface mount, top	
Microcontroller	FNURVL 405 849KM (48- pin QFP)	surface mount, bottom	
http://wiib	rew.org/wiki/Nunchucl	k#Nunchuk	

Capabilities of SPI

- Always Full Duplex
 - Communicating in two directions at the same time
- Multiple Mbps transmission speed
- Transfers data in 4 to 16 bit characters
- Multiple slaves
 - Daisy-chaining possible (a wiring scheme in which multiple devices are wired together in sequence or in a ring)

Summary								
Shares clock	Num. of wires	Speed	Dist	Pros	Cons			
No	2	115Kbits/sec max	Medium, long	Simple; Widely supported; Large range of physical standard interfaces (TTL, RS-232, RS-422, RS-485);	It's asynchronous; Requires reasonable clock accuracy at both ends;			
No	3	1 Mbits/sec	Long: 40m (1Mbit/sec) up to 10km (5Kbits/sec)	Highly reliable; Reduces amount of wiring; Multi-master capability;	Complex;			
Yes	2	100Kbits/sec 400Kbits/sec fast mode	Short, medium (< 6")	Simple; Multi-master capability; Only 2 wires to support multiple devices; Robust in noisy or power- up/down situations;	More complex protocol than SPI; Harder to level-shift or optoisolate due to bidirectional lines; Need for pull-up resistors can reduce power efficiency in some cases;			
Yes	4	10-20Mbits/sec	Short	Fast, easy, simple; A lot of support; Self clocking; Flexible data word sizes;	Multiple devices need multiple select lines; No acknowledgement ability; No inherent arbitration; No flow control; Single master only;			
	Shares Clock No No Yes Yes	Shares of wiresNo2No3Yes2Yes4	Shares clockNum. of wiresSpeed peed maxNo2115Kbits/sec maxNo31 Mbits/secYes2100Kbits/sec fast modeYes410-20Mbits/sec	Shares clockNum of wiresSpeed peed maxDistNo2115Kbits/sec maxMedium, longNo31 Mbits/secLong: 40m (1Mbits/sec)Yes2100Kbits/sec fast modeShort, medium (< 6")	Shares clockNum. of givesSpeed peedDistProsNo2115Kbits/sec maxMedium, longSimple; Widely supported; Large range of physical standard interfaces (TTL, R5-232, R5-422, R5-485);No31 Mbits/secLong: 40m (1Mbit/sec) up to 10km (5Kbits/sec)Highly reliable; Reduces amount of wiring; Multi-master capability;Yes2100Kbits/sec fast modeShort, medium (< 6")			

Credits, References http://www.ece.cmu.edu/~ece649/lectures/11 can.pdf ٠ http://marco.guardigli.it/2010/10/hacking-your-car.html ٠ http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-• Introduction.html http://www.ni.com/white-paper/2732/en ٠ http://www.best-microcontroller-projects.com/i2c-tutorial.html • http://www.robot-electronics.co.uk/acatalog/I2C Tutorial.html ٠ http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf • http://www.eecs.umich.edu/courses/eecs373/refs.html ٠ Jonathan W. Valvano, Embedded Systems: Introduction to Arm Cortex-M3 ٠ Microcontrollers, 2012. (Chapter 8)