
1

COEN-4720 Embedded Systems Design
Lecture 3

Intro to ARM Cortex-M3 (CM3) and LPC17xx MCU

Cristinel Ababei
Dept. of Electrical and Computer Engineering

Marquette University

Outline

• Overview of ARM Cortex-M3 processor

• NXP LPC17xx microcontroller unit (MCU)

1

2

2

Cortex-M3 Processor

• RISC general purpose 32-bit microprocessor
• Released in 2006
• Cortex-M3 differs from previous generations of ARM

processors by defining a number of key peripherals as
part of the core:
– interrupt controller
– system timer
– debug and trace hardware (including external interfaces)

• This enables for real-time operating systems and
hardware development tools such as debugger
interfaces be common across the family of processors

• Various Cortex-M3 based microcontroller families differ
significantly in terms of hardware peripherals and
memory

Cortex-M3 Processor
• Greater performance efficiency: more work to be done

without increasing the frequency or power requirements
– Implements the new Thumb-2 instruction set architecture

• 70% more efficient per MHz than an ARM7TDMI-S processor
executing Thumb instructions

• 35% more efficient than the ARM7TDMI-S processor executing ARM
instructions for Dhrystone benchmark

• Low power consumption: longer battery life, especially
critical in portable products including wireless networking
applications

• Improved code density: code fits in even the smallest
memory footprints

• Core pipeline has 3 stages
– Instruction Fetch
– Instruction Decode
– Instruction Execute

3

4

3

Simplified Cortex-M3 Architecture

Simplified Cortex-M3 Architecture

5

6

4

Cortex-M3 Processor Architecture

• Harvard architecture: it uses separate interfaces to
fetch instructions (Inst) and (Data)

• Processor is not memory starved: it permits accessing
data and instruction memories simultaneously

• From CM3 perspective, everything looks like memory
– Only differentiates between instruction fetches and data

accesses

• Interface between CM3 and manufacturer specific
hardware is through three memory buses:
– ICode, DCode, and System (for peripherals), which are

defined to access different regions of memory

Cortex-M3 Processor

• Cortex-M3 is a load/store architecture with
three basic types of instructions

1. Register-to-register operations for
processing data

2. Memory operations which move data
between memory and registers

3. Control flow operations enabling
programming language control flow such as
if and while statements and procedure calls

7

8

5

Cortex-M3 Pipeline

This is Slide #27 of “ARM Cortex-M3 Introduction, ARM
University Relations”. Download from:
http://www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf

9

10

http://www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf

6

Processor Register Set

• Cortex-M3 core has 16 user-visible registers
– All processing takes place in these registers

• Three of these registers have dedicated functions
– program counter (PC) - holds the address of the next

instruction to execute
– link register (LR) - holds the address from which the

current procedure was called
– “the” stack pointer (SP) - holds the address of the

current stack top (CM3 supports multiple execution
modes, each with their own private stack pointer).

• Processor Status Register (PSR) which is implicitly
accessed by many instructions

Processor Register Set

11

12

7

Cortex-M3 Memory Address Space

• ARM Cortex-M3 processor has
a single 4 GB address space

• The SRAM and Peripheral
areas are accessed through
the System Bus

• The “Code” region is accessed
through the ICode
(instructions) and DCode
(constant data) buses

Memory
Map

13

14

8

Program Memory Model
• RAM for an executing program is divided into three regions

1. Data in RAM are allocated during the link process and initialized by
startup code at reset

2. The (optional) heap is managed at runtime by library code
implementing functions such as the malloc and free which are part
of the standard C library

3. The stack is managed at runtime by compiler generated code which
generates per-procedure-call stack frames containing local
variables and saved registers

Operating Modes

• Cortex-M3 processor has two modes and two privilege
levels

• The operation modes - determine whether the
processor is running a normal program or running an
exception handler
– thread mode

– handler mode

• The privilege levels - provide a mechanism for
safeguarding memory accesses to critical regions as
well as providing a basic security model
– privileged level

– user level

15

16

9

Nested Vector Interrupt Controller (NVIC)

• A programmable device that sits between the CM3 core
and the microcontroller

• CM3 uses a prioritized vectored interrupt model – the
vector table is defined to reside starting at memory
location 0

• First 16 entries in this table are defined for all Cortex-M3
implementations while the remainder, up to 240, are
implementation specific

• NVIC supports dynamic redefinition of priorities with up
to 256 priority levels

• Two entries in the vector table are especially important:
– address 0 contains the address of the initial stack pointer
– address 4 contains the address of the “reset handler” to be

executed at boot time

Nested Vector Interrupt Controller (NVIC)

• Provides key system control registers including the
System Timer (SysTick) that provides a regular timer
interrupt

• Provision for a built-in timer across the Cortex-M3
family has the significant advantage of making
operating system code highly portable – all operating
systems need at least one core timer for time-slicing

• Registers used to control the NVIC are defined to reside
at address 0xE000E000 and are defined by the Cortex-
M3 specification

• These registers are accessed with the system bus

17

18

10

Thumb-2 Instruction Set
• Thumb-2 instruction set is a superset of the previous 16-bit Thumb

instruction set
• Provides

– A large set of 16-bit instructions, enabling 2 instructions per memory fetch
– A small set of 32-bit instructions to support more complex operations

• Specific details of this ISA not our focus (we’ll mostly program in C)

• Overview of ARM Cortex-M3 processor

• NXP LPC17xx microcontroller unit (MCU)

Outline

19

20

11

Cortex-M3 Processor vs.
CM3-based Microcontroller Units

ARM NXP, TI, ST, etc.

While there is significant overlap between the families and
their peripherals, there are also important differences
In the lab of this course we focus on the NXP’s LPC17xx family

21

22

12

LPC17xx
• LPC17xx (of NXP) is an ARM Cortex-M3 based microcontroller
• The Cortex-M3 is also the basis for microcontrollers from other

manufacturers including TI, ST, Toshiba, Atmel, etc.
• LPC1768 operates at up to a 100 MHz CPU frequency
• Sophisticated clock system
• Peripherals include:

– up to 512 kB of flash memory, up to 64 kB of data memory
– Ethernet MAC
– a USB interface that can be configured as either Host, Device, or OTG
– 8 channel general purpose DMA controller
– 4 UARTs, 2 CAN channels, 2 SSP controllers, SPI interface
– 3 I2C interfaces, 2-input plus 2-output I2S interface
– 8 channel 12-bit ADC, 10-bit DAC, motor control PWM
– Quadrature Encoder interface, 4 general purpose timers,
– 6-output general purpose PWM
– ultra-low power RTC with separate battery supply
– up to 70 general purpose I/O pins

LPC1768

23

24

13

Abstract Representation of a Development Board
(such as LandTiger 2.0)

Recall from lecture#1:

LPC1768
• LPC1768 microcontrollers are based on the Cortex-M3

processor with a set of peripherals distributed across three
buses – Advanced High-performance Bus (AHB) and its two
Advanced Peripheral Bus (APB) sub-buses APB1 and APB2.

• These peripherals:
– are controlled by the CM3 core with load and store instructions

that access memory mapped registers
– can “interrupt” the core to request attention through peripheral

specific interrupt requests routed through the NVIC

• Data transfers between peripherals and memory can be
automated using DMA

• Labs cover among others:
– basic peripheral configuration
– how interrupts can be used to build effective software
– how to use DMA to improve performance and allow processing

to proceed in parallel with data transfer

25

26

14

LPC1768
• Peripherals are “memory-mapped”

– core interacts with the peripheral hardware by reading and writing peripheral
“registers” using load and store instructions

• The various peripheral registers are documented in the user and reference
manuals
– documentation include bit-level definitions of the various registers and info on

how to interpret those bits
– actual physical addresses are also found in the reference manuals

• Examples of base addresses for several peripherals (see page 14 of the
LPC17xx user manual):
0x40010000 UART1

0x40020000 SPI

0x40028000 GPIO interrupts

0x40034000 ADC

…

• No real need for a programmer to look up all these values as they are
defined in the library file lpc17xx.h as:
LPC_UART1_BASE

LPC_SPI_BASE

LPC_GPIOINT_BASE

LPC_ADC_BASE

…

LPC1768

• Typically, each peripheral has:

1. Control registers to configure the peripheral

2. Status registers to determine the current
peripheral status

3. Data registers to read data from and write
data to the peripheral

27

28

15

LPC1768
• In addition to providing the addresses of the

peripherals, lpc17xx.h also provides C language
level structures that can be used to access each
peripheral

• For example, the SPI and GPIO ports are defined
by the following register structures:

typedef struct

{

__IO uint32_t SPCR;

__I uint32_t SPSR;

__IO uint32_t SPDR;

__IO uint32_t SPCCR;

uint32_t RESERVED0[3];

__IO uint32_t SPINT;

} LPC_SPI_TypeDef;

LPC1768

typedef struct

{
union {

__IO uint32_t FIODIR;

struct {

__IO uint16_t FIODIRL;

__IO uint16_t FIODIRH;

};

struct {

__IO uint8_t FIODIR0;

__IO uint8_t FIODIR1;

__IO uint8_t FIODIR2;

__IO uint8_t FIODIR3;

};

};

uint32_t RESERVED0[3];

union {

__IO uint32_t FIOMASK;

struct {

__IO uint16_t FIOMASKL;

__IO uint16_t FIOMASKH;

};

struct {

__IO uint8_t FIOMASK0;

__IO uint8_t FIOMASK1;

__IO uint8_t FIOMASK2;

__IO uint8_t FIOMASK3;

};

};

union {

__IO uint32_t FIOPIN;

struct {

__IO uint16_t FIOPINL;

__IO uint16_t FIOPINH;

};

struct {

__IO uint8_t FIOPIN0;

__IO uint8_t FIOPIN1;

__IO uint8_t FIOPIN2;

__IO uint8_t FIOPIN3;

};

};

union {

__IO uint32_t FIOSET;
struct {

__IO uint16_t FIOSETL;

__IO uint16_t FIOSETH;

};

struct {

__IO uint8_t FIOSET0;

__IO uint8_t FIOSET1;

__IO uint8_t FIOSET2;

__IO uint8_t FIOSET3;

};

};

union {

__O uint32_t FIOCLR;

struct {

__O uint16_t FIOCLRL;

__O uint16_t FIOCLRH;

};

struct {

__O uint8_t FIOCLR0;

__O uint8_t FIOCLR1;

__O uint8_t FIOCLR2;

__O uint8_t FIOCLR3;

};

};

} LPC_GPIO_TypeDef;

29

30

16

• The register addresses of the various ports are defined in the
library (see lpc17xx.h):

#define LPC_APB0_BASE (0x40000000UL)

#define LPC_UART1_BASE (LPC_APB0_BASE + 0x10000)

#define LPC_ADC_BASE (LPC_APB0_BASE + 0x34000)

…

#define LPC_GPIO_BASE (0x2009C000UL)

#define LPC_GPIO1_BASE (LPC_GPIO_BASE + 0x00020)

#define LPC_GPIO1 ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE)

…

• For example, to turn on the LED marked as D11 on the
LandTiger 2.0 board (which is driven by the pin P2.1 of the
MCU), the following code can be used:

LPC_GPIO1->FIOSET |= 1 << 1;

• CHECK the Datasheet of LPC1768, page #131, NOW!!!

LPC1768

Memory

• On-chip flash memory system
– Up to 512 kB of on-chip flash memory
– Flash memory accelerator maximizes performance for

use with the two fast AHB-Lite buses
– Can be used for both code and data storage

• On-chip Static RAM
– Up to 64 kB of on-chip static RAM memory
– Up to 32 kB of SRAM, accessible by the CPU and all

three DMA controllers are on a higher-speed bus
– Devices with more than 32 kB SRAM have two

additional 16 kB SRAM blocks

31

32

17

LPC17xx system memory map

References & Credits

• Joseph Jiu, The Definitive guide to the ARM
Cortex-M3, 2007

• LPC17xx microcontroller USER MANUAL

• Cortex-M3 Processor TECHNICAL REFERENCE
MANUAL

• Lab manual (G. Brown, Indiana)

• EECS-373, UMich

See website of class for links to download any of the above:
http://dejazzer.com/coen4720/index.html

33

34

http://dejazzer.com/coen4720/index.html

