

(1)
$$v_0 = k V_{REF} D_I$$
 MSB
 $= k V_{REF} (b_1' \frac{1}{2} + b_2 \frac{1}{2^2} + \dots + b_n \frac{1}{2^n})$ = FSR = full scale nauge $V_{FSR} = k V_{REF}$
 $= k \cdot V_{REF} \cdot \sum_{i=1}^{n} \frac{b_i}{2^i}$ = LSB = Pesolubar $\frac{V_{FSR}}{2^n}$
 $= LSB = Pesolubar \frac{V_{FSR}}{2^n}$
 $= This is colled a resultiplying DAC because No is obtained
by coultiplying $V_{REF} \times D_I$: $D_I = b_1 \cdot 2^{-1} + b_2 \cdot 2^{-2} + \dots + b_n \cdot 2^{-n}$$

$$\begin{pmatrix}
 i_{1} = \frac{\sqrt{per}}{2p} = \frac{\sqrt{per}}{R} \cdot \frac{1}{2} \\
 i_{2} = \frac{\sqrt{per}}{4p} = \frac{\sqrt{per}}{R} \cdot \frac{1}{2^{2}} \\
 i_{n} = \frac{\sqrt{per}}{R} \cdot \frac{1}{2^{n}} \\
 \frac{OBS}{n} = -i_{0} \\
 \frac{\sqrt{per}}{R} = -i_{$$

STM32L053R8 MCU

- DAC peripherals available in STM32 microcontrollers are based on the common R-2R resistor ladder network.
- The DAC peripheral can be driven manually or using the DMA and a trigger source (e.g., a dedicated timer).

15 Digital-to-analog converter (DAC)

15.1 Introduction

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data could be left- or right-aligned. An input reference voltage, $V_{\text{REF4}}(shared with ADC)$, is available. The output can optionally be buffered for higher current drive.

15.2 DAC1 main features

The devices integrate two DAC converters, featuring one output channel each: DAC_OUT1 and DAC_OUT2.

DAC1 main features are the following

- One data holding register
- Left or right data alignment in 12-bit mode
 Synchronized update capability
- Synchronized update cap
 Noise-wave generation
- Triangular-wave generation
- Dual DAC channels with independent or simultaneous conversions
- DMA capability (including underrun detection)
- External triggers for conversion
 - Input voltage reference, V_{REF+}

Source: MCU Reference Manual

12

Examples	
 Example 1: Driving the DAC Manually Adapted from Textbook, Ch.13. Used when we do not need conversions at high frequencies. The example uses the output of the DAC going to pin PA4, which is conn a resistor in series with an LED on the breadboard. The program drives PA4 so that to fade ON/OFF the LD2 using the DAC. PA4 can be configured from within STM32CubeMX tool when you created new project. 	ected to e the
 Example 2: Driving the DAC in DMA Mode Using a Time Adapted from Textbook, Ch.13 A common usage of the DAC peripheral is to generate an analog wavefo a given frequency (e.g. in audio applications). In this case, then, a better drive the DAC is by using the DMA and a timer to trigger the conversions Start the DAC and perform a transfer in DMA. May want to use an oscilloscope to visualize the sine wave. 	r rm with way to s. 15

