
1

Lecture 10
Memory

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4720 Embedded Systems

1

Outline
•Registers

•Memory map

•Memory protection unit (MPU)

•Direct memory access (DMA)

•Program memory model

•Memories – basic concepts
2

1

2

2

Cortex-M Processors

• Cortex-M processors use a load/store architecture
with three basic types of instructions

1. Register-to-register operations for processing data

2. Memory operations which move data between
memory and registers

3. Control flow operations enabling programming
language control flow such as if and while
statements and procedure calls

Processor “Register Set”

4

•16 user-visible registers
 R0 to R15

 All processing takes place in these registers

•Three of these registers have dedicated functions
 R15 is the Program Counter (PC) - holds the address of the next

instruction to execute

 R14 is a register called Link Register (LR) - holds the address from
which the current procedure was called

 R13 is the Stack Pointer (SP) - holds the address of the current
stack top

3

4

3

Registers

Cortex-M0+ Processor: Memory Addressing
•32-bit addressing supporting up to 4 GB of memory space.

•The system bus interface is based on an on-chip bus protocol
called (Advanced High-performance Bus) AHB-Lite, supporting 8-
bit, 16-bit, and 32-bit data transfers.

•The AHB-Lite protocol is pipelined, support high operation
frequency for the system.

•Peripherals can be connected to a simpler bus based on APB
protocol (Advanced Peripheral Bus) via an AHB to APB bus bridge.

•Cortex-M0+ processor does not contain memories and peripherals
(chip designers need to add these components to the MCU
designs).

5

6

4

Example of MCU that uses Cortex-M0+ Processor

7Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

Separation of main system bus and peripheral bus

8Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

7

8

5

Cortex-M0+ Processor: Memory Map

4 GB address space

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

10

Cortex-M0+ Processor: Memory Map

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

NOTE: See detailed
mapping info in
MCU Reference
Manual (Ch.3)

9

10

6

STM32L053R8 -
Datasheet

NUCLEO-L053R8
•Package pin count: 64 pins

•Flash memory size: 64 KB

12Source: Board user manual

11

12

7

Peripherals

Source: MCU Datasheet

13

14

8

Source: MCU Datasheet

Memory Attributes and Memory Access
Permission

•To make porting of software between different
devices easier, a number of memory attribute
settings are available for each regions in the
memory map.
•Memory attributes are characteristics of the

memory accesses; they can affect data and
instruction accesses to memory as well as accesses
to peripherals.

16

15

16

9

Memory Attributes

17

Memory Attributes
•Memory attributes used to define what type of devices

could be used in each memory region

18

17

18

10

19Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

Memory access permission for regions

20Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-M0 and Cortex-M0+ Processors, 2nd Ed., 2015. (Book 2).

19

20

11

Memory Protection Unit (MPU)

Source: MCU Datasheet

Memory Protection Unit (MPU)
•Memory Protection Unit (MPU) is a programmable block

inside the processor that defines memory attributes and
memory access permissions.
•MPU is used to detect problems in the system

 e.g., when an application task behaves erroneously by trying to access a memory
location which is invalid or disallowed

•MPU can be used to make an embedded system more robust,
and in some cases make the system more secure by:
 Preventing application tasks from corrupting stack or data memory used by

other tasks
 Preventing unprivileged tasks from accessing certain peripherals
 Defining SRAM or RAM space as nonexecutable to prevent code injection attacks

•MPU is disabled by default
22

21

22

12

Direct Memory Access (DMA)

23Source: MCU Datasheet

Need for DMA
uint8_t buf[20];

...

HAL_UART_Receive(&huart2, buf, 20, HAL_MAX_DELAY);

24Source: [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

• CPU will be involved during these operations, even if its role is “limited” to move data from peripheral
to SRAM

• This simplifies design of the hardware, but introduces performance penalties

• Cortex-M core is “responsible” to load data from SRAM to UART peripheral - this is a blocking
operation

• Prevents the CPU from doing other activities

• It also requires the CPU to wait for “slower” units completing their job

• This is the reason why high-performance MCUs provide DMA controllers

23

24

13

DMA
•Direct memory access (DMA) controller is a bus master and

system peripheral.
•The DMA is used to perform programmable data transfers

between memory-mapped peripherals and/or memories,
upon the control of an off-loaded CPU.
•The DMA controller features a single AHB master architecture.
•There is one instance of DMA with 7 channels.
•Each channel is dedicated to managing memory access

requests from one or more peripherals.
•The DMA includes an arbiter for handling the priority

between DMA requests.

25

26Source: MCU Reference Manual

NOTE: See lots of
details in MCU
Reference
Manual (Ch.11)

25

26

14

DMA Channels
• A channel is used to exchange data between

two memory regions in the 4GB address space.

• Peripherals are slave units: they cannot access
the bus independently.

• A master is always needed to start a
transaction.

• A way to notify that the peripherals are ready
to exchange data => dedicated number of DMA
requests lines are available from peripherals to
the DMA controller.

Source: [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

HAL DMA Module

28

27

28

15

(1) Perform DMA Transfers in Polling Mode

•Once we have configured the DMA channel/stream,
we must do few other things:

1. to setup the addresses on the memory and peripheral port;
2. to specify the amount of data we are going to transfer;
3. to arm the DMA;
4. to enable the DMA mode on the corresponding peripheral;

•First three points by using:
 HAL_StatusTypeDef HAL_DMA_Start(…);

•Fourth point is peripheral dependent
29

Example 1
•Sending a string over UART2 peripheral using
DMA mode
•Steps

1. UART2 is configured using the HAL_UART module
2. DMA1 channel is configured to do a memory-to-peripheral

transfer
3. Corresponding channel is armed to execute the transfer and

UART is enabled in DMA mode

•See demo in class (also see Ch.9 of textbook)
30

29

30

16

(2) Perform DMA Transfers in Interrupt Mode
•DMA can generate interrupts related to channel activities

•DMA can be enabled in interrupt mode following steps:
1) Define three functions acting as callback routines and pass them to function

pointers XferCplt-Callback, XferHalfCpltCallback and XferErrorCallback in a
DMA_HandleTypeDef handler (it is ok to define only the functions we are
interested in);

2) Write ISR for the IRQ associated to the channel you are using and do a call to the
HAL_DMA_IRQHandler() passing the reference to the DMA_HandleTypeDef
handler;

3) Enable the corresponding IRQ in the NVIC controller;
4) Use function HAL_DMA_Start_IT(), which automatically performs all the necessary

setup steps, passing to it same arguments of HAL_DMA_Start().

•Example 2
 See demo in class (also see Ch.9 of textbook)

31

Program Memory Model

31

32

17

• RAM for an executing program is divided into three
regions:
1) Data in RAM are allocated during the link process and

initialized by startup code at reset

2) The (optional) Heap is managed at runtime by library code
implementing functions such as the malloc and free which
are part of the standard C library

3) The Stack is managed at runtime by compiler generated
code which generates per-procedure-call stack frames
containing local variables and saved registers

Program Memory Model

Program Code
•Program code can be located in:
 the Code region
 the SRAM region
 the External RAM region

•Program code typically stored in flash memory
(i.e., code region)

33

34

18

References & Credits
• [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

• [Book 2] Joseph Jiu, The Definitive guide to ARM Cortex-M0 and
Cortex-M0+ Processors, 2015.

• https://www.st.com/content/st_com/en/arm-32-bit-
microcontrollers/arm-cortex-m0-plus.html

• STM32L053R8 MCU
– Datasheet

– User Manual

• NUCLEO-L053R8 Board
– User Manual

Outline
•Registers

•Memory map

•Memory protection unit (MPU)

•Direct memory access (DMA)

•Program memory model

•Memories – basic concepts
36

35

36

https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m0-plus.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m0-plus.html

19

Memory: basic concepts

• Stores large number of bits
– m x n: m words of n bits each
– k = Log2(m) address input signals
– or m = 2k words
– e.g., 4,096 x 8 memory:

• 32,768 bits
• 12 address input signals
• 8 input/output data signals

• Memory access
– r/w: selects read or write
– enable: read or write only when

asserted
– multiport: multiple accesses to

different locations simultaneously

m × n memory

…

…

n bits per word

m
 w

o
rd

s

enable
2k × n read and
write memory

A0
…

r/w

…

Q0Qn-1

Ak-1

memory external view

Writable?
• Read-Only Memory (ROM):

– Can only be read; cannot be modified (written) by the processor.
Contents of ROM chip are set before chip is placed into the
system.

• Random-Access Memory (RAM):
– Read/write memory. Although technically inaccurate, term is

used for historical reasons. (ROMs are also random access.)

Permanence?
• Volatile memories

– Lose their contents when power is turned off. Typically used to
store program while system is running.

• Non-volatile memories do not.
– Required by every system to store instructions that get executed

when system powers up (boot code).

Memory: basic categories

37

38

20

Memories Classification
Read-Write Memory Read-Only Memory

Volatile Memory
Non-volatile

Memory

Mask-Programmed ROM (PROM)

(nonvolatile)

Random Access Sequential Access

EPROM

EEPROM

FLASH
SRAM

DRAM

FIFO

LIFO

Shift Register

CAM

▪ Key Design Metrics:

1.Memory Density (number of bits/mm2) and Size

2.Access Time (time to read or write) and Throughput

3.Power Dissipation

▪ Volatile: need electrical power
▪ Nonvolatile: magnetic disk, retains its stored information after the removal of power
▪ Random access: memory locations can be read or written in a random order
▪ EPROM: erasable programmable read-only memory
▪ EEPROM: electrically erasable programmable read-only memory
▪ FLASH: memory stick, USB disk
▪ Access pattern: sequential access: (video memory streaming) first-in-first-out (buffer), last-in-first-out

(stack), shift register, content-addressable memory
▪ Static vs. Dynamic: dynamic needs periodic refresh but is simpler, higher density

Write ability and storage permanence of memories,
showing relative degrees along each axis (not to scale)

External
programmer

OR in-system,
block-oriented
writes, 1,000s

of cycles

Battery
life (10
years)

Write
ability

EPROM

Mask-programmed ROM

EEPROM FLASH

NVRAM

SRAM/DRAM

St
o

ra
ge

p
e

rm
an

e
n

ce

Nonvolatile

In-system
programmable

Ideal memory

OTP ROM

During
fabrication

only

External
programmer,

1,000s
of cycles

External
programmer,
one time only

External
programmer

OR in-system,
1,000s

of cycles

In-system, fast
writes,

unlimited
cycles

Near
zero

Tens of
years

Life of
product

Write-ability and Storage-permanence

39

40

21

Write-ability
• Ranges of write ability

– High end
• processor writes to memory simply and quickly

• e.g., RAM

– Middle range
• processor writes to memory, but slower

• e.g., FLASH, EEPROM

– Lower range
• special equipment, “programmer”, must be used to write to memory

• e.g., EPROM, OTP ROM

– Low end
• bits stored only during fabrication

• e.g., Mask-programmed ROM

• In-system programmable memory
– Can be written to by a processor in the microcomputer system using

the memory

– Memories in high end and middle range of write ability

Storage-permanence
• Range of storage permanence

– High end

• essentially never loses bits

• e.g., mask-programmed ROM

– Middle range

• holds bits days, months, or years after memory’s power source turned off

• e.g., NVRAM

– Lower range

• holds bits as long as power supplied to memory

• e.g., SRAM

– Low end

• begins to lose bits almost immediately after written – refreshing needed

• e.g., DRAM

• Nonvolatile memory
– Holds bits after power is no longer supplied

– High end and middle range of storage permanence

41

42

22

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

Mem
Cell

word
lines

bit lines

Different memory types are distinguished by technology for
storing bit in memory cell.

Memory array

memory
array

16 bits (4x4)

2
 t

o
 4

 d
ec

o
d

erA0

A1

A2

A3

4:1 mux/demux

OE#

CS#

WE#

D0Control signals:
• Control read/write of array
• Map internal physical array to external configuration (4x4 → 16x1)

Support circuitry

43

44

23

Interface (1/2)

•Physical configurations are typically square.
 Minimize length word + bit line → minimize access delays.

•External configurations are “tall and narrow”. The
narrower the configuration, the higher the pin
efficiency. (Adding one address pin cuts data pins in
half.)
 Several external configurations available for a given capacity.
 64Kbits may be available as 64Kx1, 32Kx2, 16Kx4,…

Interface (2/2)

•Chip Select (CS#): Enables device. If not asserted,
device ignores all other inputs (sometimes entering
low-power mode).

•Write Enable (WE#): Store D0 at specified address.

•Output Enable (OE#): Drive value at specified
address onto D0.

45

46

24

Memory timing: Reads

• Access time: Time required from start of a read access to valid data output.
 Access time specified for each of the three conditions required for valid data output (valid address,

chip select, output enable)

• Time to valid data out depends on which of these is on critical path.

• tRC: Minimum time required from start of one access to start of next.
 For most memories equal to access time.

tRC

ADDR

CS#

OE#

DATA

tAV

tCS

tOE

Memory timing: Writes

• Write happens on rising edge of WE#

• Separate access times tAW, tCW, tWP specified for address valid, CS#, WE#.

• Typically, tAS = 0, meaning that WE# may not be asserted before address is
valid.

• Setup and hold times required for data.

• Write cycle time tWC is typically in the order of tAW.

ADDR

CS#

WE#

DATA

tWC

tAW

tCW

tWP

tAS

tDS tDH

47

48

25

Memory Comparison

Memory

Type

Read

Speed

Write

Speed

Volatility Density Power Rewrite

SRAM +++ +++ - - ++

DRAM + + - - ++ - ++

EPROM + - + + -

EEPROM + - + + +

Flash + + + + +

ROM: “Read-Only” Memory

• Nonvolatile

• Can be read from but not written to

• Traditionally written to, “programmed”,
before inserting to microcomputer system

• Uses
– Store software program for general-purpose processor

– Store constant data (parameters) needed by system

– Implement combinational circuits (e.g., decoders)

2k × n ROM

…
Q0Qn-1

A0 …

enable

Ak-1

External view

49

50

26

Example: 8 x 4 ROM

• Horizontal lines = words

• Vertical lines = data

• Lines connected only at circles

• Decoder sets word 2’s line to 1 if
address input is 010

• Data lines Q3 and Q1 are set to 1
because there is a “programmed”
connection with word 2’s line

• Word 2 is not connected with data
lines Q2 and Q0

• Output is 1010

8 × 4 ROM

3×8

decoder

Q0Q3

A0

enable

A2

word 0

word 1

A1

Q2 Q1

programmable
connection

word line

data line

word 2

Internal view

Mask-programmed ROM

• Connections “programmed” at fabrication
– set of masks

• Lowest write ability
– only once

• Highest storage permanence
– bits never change unless damaged

• Typically used for final design of high-volume systems
– spread out NRE (non-recurrent engineering) cost for a low unit cost

51

52

27

OTP ROM: One-time programmable ROM

• Connections “programmed” after manufacture by user
– user provides file of desired contents of ROM

– file input to machine called ROM programmer

– each programmable connection is a fuse

– ROM programmer blows fuses where connections should not exist

• Very low write ability
– typically written only once and requires ROM programmer device

• Very high storage permanence
– bits don’t change unless reconnected to programmer and more fuses

blown

• Commonly used in final products
– cheaper, harder to inadvertently modify

(d)

(a)

(b)
source drain

+15V

source drain

0V

(c)
source drain

floating gate

5-30 min

EPROM: UV Erasable programmable ROM

• Programmable component is a MOS transistor
– Transistor has “floating” gate surrounded by an insulator

– (a) Negative charges form a channel between source and drain
storing a logic 1

– (b) Large positive voltage at gate causes negative charges to
move out of channel and get trapped in floating gate storing a
logic 0

– (c) (Erase) Shining UV rays on surface of floating-gate causes
negative charges to return to channel from floating gate
restoring the logic 1

– (d) An EPROM package showing quartz window through which
UV light can pass

• Better write ability

– can be erased and reprogrammed thousands of times

• Reduced storage permanence

– program lasts about 10 years but is susceptible to
radiation and electric noise

• Typically used during design development

53

54

28

Sample EPROM components

Sample EPROM programmers

55

56

29

EEPROM: Electrically erasable programmable ROM

• Programmed and erased electronically
– typically by using higher than normal voltage

– can program and erase individual words

• Better write ability
– can be in-system programmable with built-in circuit to provide higher than normal voltage

• built-in memory controller commonly used to hide details from memory user

– writes very slow due to erasing and programming

• “busy” pin indicates to processor EEPROM still writing

– can be erased and programmed tens of thousands of times

• Similar storage permanence to EPROM (about 10 years)

• Far more convenient than EPROMs, but more expensive

FLASH

• Extension of EEPROM
– Same floating gate principle

– Same write ability and storage permanence

• Fast erase
– Large blocks of memory erased at once, rather than one word at a time

– Blocks typically several thousand bytes large

• Writes to single words may be slower
– Entire block must be read, word updated, then entire block written back

57

58

30

FLASH applications
• Flash technology has made rapid advances in recent

years.
 cell density rivals DRAM; better than EPROM; much better than EEPROM.
 multiple gate voltages can encode 2 bits per cell.
 many-GB devices available

• ROMs and EPROMs rapidly becoming obsolete.

• Replacing hard disks in some applications.
 smaller, lighter, faster
 more reliable (no moving parts)
 cost effective

• PDAs, cell phones, laptops, iPods, etc…

RAM: Random-Access Memory

• Typically volatile memory

– bits are not held without power supply

• Read and written to easily by microprocessor
during execution

• Internal structure more complex than ROM

– a word consists of several memory cells, each
storing 1 bit

– each input and output data line connects to each
cell in its column

– rd/wr connected to every cell

– when row is enabled by decoder, each cell has
logic that stores input data bit when rd/wr
indicates write or outputs stored bit when rd/wr
indicates read

enable
2k × n read and write

memory

A0
…

r/w

…

Q0Qn-1

Ak-1

external view

4×4 RAM

2×4
decoder

Q0Q3

A0

enable

A1

Q2 Q1

Memory
cell

I0I3 I2 I1

rd/wr To every cell

internal view

59

60

31

Basic Types of RAM: SRAM vs. DRAM

• SRAM Cell

• Larger cell  lower density, higher
cost/bit

• No dissipation

• Read non-destructive

• No refresh required

• Simple read  faster access

• Standard IC process  natural for
integration with logic

• DRAM Cell

• Smaller cell  higher density, lower
cost/bit

• Needs periodic refresh, and refresh
after read

• Complex read  longer access time

• Special IC process  difficult to
integrate with logic circuits

raw select

bit line bit line

raw enable

bit line

Primary difference between different memory types is the bit cell

addr

data

RAM variations

• PSRAM: Pseudo-static RAM
– DRAM with built-in memory refresh controller

– Popular low-cost high-density alternative to SRAM

• NVRAM: Nonvolatile RAM
– Holds data after external power removed

– Battery-backed RAM

• SRAM with own permanently connected battery

• writes as fast as reads

• no limit on number of writes unlike nonvolatile ROM-based memory

– SRAM with EEPROM or FLASH

• stores complete RAM contents on EEPROM or FLASH before power turned off

61

62

32

Dual-port RAM (DPRAM)

• Usually a Static RAM circuit with two address and data bus
connections

– Shared RAM for two independent users

• Flexible communication link between two processors

– Master/slave

DDR1 SDRAM, DDR2, …
•Double Data Rate synchronous dynamic random access

memory (DDR1 SDRAM) is a class of memory integrated
circuits used in computers.
•The interface uses double pumping (transferring data on

both the rising and falling edges of the clock signal) to lower
the clock frequency
•One advantage of keeping the clock frequency down is that

it reduces the signal integrity requirements on the circuit
board connecting the memory to the controller
•DDR2 memory is fundamentally similar to DDR SDRAM
•DDR2 SDRAM can perform four transfers per clock using a

multiplexing technique

63

64

	Slide 1: Lecture 10 Memory
	Slide 2: Outline
	Slide 3
	Slide 4: Processor “Register Set”
	Slide 5
	Slide 6: Cortex-M0+ Processor: Memory Addressing
	Slide 7: Example of MCU that uses Cortex-M0+ Processor
	Slide 8: Separation of main system bus and peripheral bus
	Slide 9
	Slide 10
	Slide 11: STM32L053R8 - Datasheet
	Slide 12: NUCLEO-L053R8
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Memory Attributes and Memory Access Permission
	Slide 17: Memory Attributes
	Slide 18: Memory Attributes
	Slide 19
	Slide 20: Memory access permission for regions
	Slide 21: Memory Protection Unit (MPU)
	Slide 22: Memory Protection Unit (MPU)
	Slide 23: Direct Memory Access (DMA)
	Slide 24: Need for DMA
	Slide 25: DMA
	Slide 26
	Slide 27: DMA Channels
	Slide 28: HAL DMA Module
	Slide 29: (1) Perform DMA Transfers in Polling Mode
	Slide 30: Example 1
	Slide 31: (2) Perform DMA Transfers in Interrupt Mode
	Slide 32
	Slide 33
	Slide 34: Program Code
	Slide 35
	Slide 36: Outline
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Memory timing: Reads
	Slide 48: Memory timing: Writes
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: DDR1 SDRAM, DDR2, …

