COEN-4720 Embedded Systems

Lecture 10
Memory

Cris Ababei
Dept. of Electrical and Computer Engineering

[fﬂrﬂ MARQUETTE
BFML| UNIVERSITY

BE THE DIFFERENCE.

Outline

eRegisters

eMemory map

eMemory protection unit (MPU)
eDirect memory access (DMA)
eProgram memory model
eMemories — basic concepts

Cortex-M Processors

» Cortex-M processors use a load/store architecture
with three basic types of instructions

1. Register-to-register operations for processing data

2. Memory operations which move data between
memory and registers

3. Control flow operations enabling programming
language control flow such as if and while
statements and procedure calls

Processor “Register Set”

e16 user-visible registers
° RO to R15
° All processing takes place in these registers

eThree of these registers have dedicated functions
°R15 is the Program Counter (PC) - holds the address of the next
instruction to execute
°R14 is a register called Link Register (LR) - holds the address from
which the current procedure was called

°R13 is the Stack Pointer (SP) - holds the address of the current
stack top

Registers

a Register bank N

General Purpose Register |

General Purpose Register Special Registers

General Purpose Register

General Purpose Register - Program Status Registers
Low Registers

General Purpose Register

General Purpose Register [APSR [EPSR | IPSR |

General Purpose Register Application Execution Interrupt

General Purpose Register) PSR PSR PSR

General Purpose Register |

General Purpose Register Interrupt Mask Register

General Purpose Register High Registers

General Purpose Register Stack definition

General Purpose Register

Stack Pointer (SP) L

Link Register (LR)

Program Counter (PC) —

Main Stack Pointer
\ Processs Stack Pointer /

Figure 4.3

Registers in the Cortex”-M0 and Cortex-MO+ processors.

Cortex-MO+ Processor: Memory Addressing

¢ 32-bit addressing supporting up to 4 GB of memory space.

e The system bus interface is based on an on-chip bus protocol
called (Advanced High-performance Bus) AHB-Lite, supporting 8-
bit, 16-bit, and 32-bit data transfers.

e The AHB-Lite protocol is pipelined, support high operation
frequency for the system.

e Peripherals can be connected to a simpler bus based on APB
protocol (Advanced Peripheral Bus) via an AHB to APB bus bridge.

e Cortex-MO+ processor does not contain memories and peripherals
(chip designers need to add these components to the MCU
designs).

Example of MCU that uses Cortex-MO+ Processor

Single Cycle /O
interface bus

DMA Conf'g.u‘:xon
Intermipts Processor Trace Controller |- »)
{IRCs, NME_ interface Digital logic
System bus [AHB Lite)| | Memaries
| | (|
Rash MTH Bus - Digital Peripherals
Boot ROM == Bridge)
Memory - Anzlogue [Mixed
Signal Peripherzls
Peripheral bus [APB)
A A A A
L] Y Y A J
1/0 pads. J
Figure 2.6

A systern with the Cortex™ MO+ Processor and a DMA Controller.

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2). 7

Separation of main system bus and peripheral bus

Cortex-M0

Microcontroller

M 32-bit System bus (AHB Lite)

1 T

=

Data Memory
(e.g. SRAM)

Program Memory

(e.g. Flash)

Bus Bridge

32-bit Peripheral bus (APB)

1C

JC J°T

1C

Peripheral
(e.g. 1i0)

Peripheral
(e.g. Timer)

Peripheral
(e-g- Watchdog timer)

Figure 7.1

Separation of system and peripheral bus in a simple 32-bit microcontroller.

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO0+ Processors, 2nd Ed., 2015. (Book 2). 8

Private peripherals including
built-in interrupt controller
(NVIC) and debug
components

Mainly used for external
peripherals.

Mainly used for external
memory.

Mainly used for peripherals.

Mainly used for data memory
(e.g. static RAM.)

Mainly used for program
code. Also used for default
exception vector table

OXFFFFFFFF

0xE0000000
OxDFFFFFFF

0xA0000000
0x9FFFFFFF

0x60000000
Ox5FFFFFFF
0x40000000
0x3FFFFFFF
0x20000000
O0x1FFFFFFF
0x00000000

Cortex-MO+ Processor:

Memory Map

OxEQOF FFFF OxEQQOEFFF
Private
System Peripheral Bus Sgs fem ggg;) !
(PPB) pace
Private Peripheral Bus
0xE0000000 0xEQ0D0ECOO
External Device 1GH|
External RAM 1GB
Peripherals 0.5GB
SRAM 0.5GB
CODE 0.5GB

Figure 4.10
Memory map.

Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2).

Mamary map
OxFFFFFFFF

Reserved
0xEQ100000
OxEQOFFFFF | Internal Private Peripheral

Bus
eDFFFFFFF
0+C0000000 Extemal device
OXBFFFFFFF
ox8FFFFFFF
Ox80000000
warrrerre [M T
ox5FFFFFFF

Peripheral
Ox40000000
0x3FFFFFFF

SRAM
ox1FFFFFFF

Code

Cortex-MO+ Processor: Memory Map

Memaory map of the
Private Penpharal Bus
e
. OxEDOFEFFF Debug Contral oxEoOEDS
NVIC
E0DDFD00 (Nestad Vectored
System Control Space Intesrupt Controlien) | oy poak 100
(5CS) Reserved
BR
(Breakpoant unit) oxE0002000
DWT (Data
‘Watchpoint ung) 0xE0001000 -
pes |, NOTE: See detailed
mapping info in
MCU Reference
Manual (Ch.3)
Figure 7.2

Architecturally defined memory map of the Cortex™-M0/M0+ processor.
Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2). 10

10

STM32L053RS8 -
Datasheet

‘_ STM32L053C6 STM32L053C38
Y7 ccuamentes STM32L053R6 STM32L053R8

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 64KB
Flash, 8KB SRAM, 2KB EEPROM, LCD, USB, ADC, DAC

Features
* Ultra-low-power platform
— 1.65V 10 3.6 V power supply
— -40to 125 °C temperature range
— 0.27 pA Standby mode (2 wakeup pins)
— 0.4 pA Stop mode (16 wakeup lines)
— 0.8 pA Stop mode + RTC + 8-Kbyte RAM
retention
— 88 pAMHz in Run mode
— 3.5 ps wakeup time (from RAM)
— 5 ps wakeup time (from Flash memory)
« Core: Arm® 32-bit Cortex®-M0+ with MPU
— From 32 kHz up to 32 MHz max.
2 95, DMIESMHZ
Memaories
— Up to 64-Kbyte Flash memory with ECC
— 8-Kbyte RAM
— 2 Kbytes of data EEPROM with ECC
— 20-byte backup register

(
i
i
i

e

N\ . Seclocomieclion. AGaDSLRML Qeralion.. o

11

Datasheet - production data

e n S

LOFPE4 10x10 mm ~ UFOFFN48
LQFP48 757 mm (77 mm} TFBGABS 5x5 mm

— Step-up converted on board
« Rich Analog peripherals
— 12-bit ADC 1.14 Msps up to 16 channels (down
to 1.65 V)
— 12-bit 1 channel DAC with output buffers (down
to 1.8V)
— 2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)
+ Up to 24 capacitive sensing channels supporting
touchkey, linear and rotary touch sensors
« 7-channel DMA controller, supporting ADC, SPI,
12C, USART, DAC, Timers

« 8x peripheral communication interfaces

NUCLEO-LO53R8

e Package pin count: 64 pins
eFlash memory size: 64 KB

Table 2. Codification explanation

NUCLEO-XXYYRT Description Example: NUCLEO-L452RE
MCU series in STM32 Arm :
XX Cortex MCUs STM32L4 Series
Yy STM32 product line in the STM32L452
series
R STM32 package pin count 64 pins
STM32 Flash memory size:
— 8 for 64 Kbytes
— B for 128 Kbytes
T — C for 256 Kbytes 512 Kbytes
- E for 512 Kbytes
- G for 1 Mbyte
— Z for 192 Kbytes
Source: Board user manual 12

12

Figure 1. STM32L053x6/8 block diagram

2, b, ouT

8, L, oUT

IS
e ouT

> Peripherals

cou sEGr,
LED ViCDt

RESETACLK

L
N

o e

oo = REGULATOR

usaTHV!

13

3.8

Memories

The STM32L053x6/8 devi M\iﬂt%e following features:

. 8 Kbytes of embedded SRAM agcessed (read/write) at CPU clock speed with 0 wait
states. With the enhalicad Hus-matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).

e The non-volatile memory is divided infothree arrays:
- 320r64 Kb)derﬂiﬁe d Flash pipgram memory
— 2 Kbytes of daia EEPROM © m= ws s
— Information blotk"Cofftalfing 32 user and factory options bytes plus 4 Kbytes of
system memory
The user options bytes are used to write-protect or read-out protect the memory (with
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:
* Level 0: no protection
e Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are
connected or boot in RAM is selected
« Level 2: chip readout protected, debug features (Cortex-M0O+ serial wire) and boot in
RAM selection disabled (debugline fuse)
The firewall protects parts of code/data from access by the rest of the code that is executed
outside of the protected area. The granularity of the protected code segment or the non-
volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the
volatile data segment (RAM).

The whole non-volatile memory embeds the error correction code (ECC) feature.

Source: MCU Datasheet

14

3.9 Boot modes

At startup, BOOTO pin and nBOOT1 option bit are used to select one of three boot options:
« Boot from Flash memory

+« Boot from System memory

« Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by
using SPI1(PA4, PAS, PAB, PAT) or SPIZ (PB12, PB13, PB14, PB15), USART1(PAS,
PA10) or USART2(PAZ, PA3). See STM32™ microcontroller system memory boot mode

AN2606 for details.

Source: MCU Datasheet

15

Memory Attributes and Memory Access
Permission

eTo make porting of software between different
devices easier, a number of memory attribute
settings are available for each regions in the
memory map.

eMlemory attributes are characteristics of the
memory accesses; they can affect data and
instruction accesses to memory as well as accesses

to peripherals.

16

16

Memory Attributes

Executable—The executable attribute defines whether program execution is allowed in
that memory region. If a memory region is defined as nonexecutable, in ARM
documentation it is marked as eXecute Never (XN).

Bufferable—When a data write is carried out to a bufferable memory region, the write
transfer can be buffered, which means the processor can continue o execute next
instruction without waiting for the current write transfer to complete.

Cacheable—If a cache device is present on the system, it can keep a local copy of the
data during a data transfer, and reuse it next time the same memory location is accessed
to speed up the system. The cache device can be a cache memory unit, or could be a
small buffer in a memory controller.

Shareable—The sharecable attribute defines whether a memory region can be accessed
by more than one processor. If a memory region is shareable, the memory system needs
to ensure coherency between memory accesses by multiple processors in this region.

17

17

Memory Attributes

could be used in each memory region

Normal memory—Normal memories can be shareable or nonshareable, and can be
either cacheable or noncacheable. For memories with cacheable, the caching behavior
can be further divided into Write Through (WT) or Write Back Write Allocate
(WBWA).

Device memory—Device memories are noncacheable. They can be shareable or
nonshareable.

Strongly Ordered (SO) memory—A memory region that is nonbufferable, noncache-
able and transfer to/from SO region takes effect immediately. Also, the orders of SO
transfers on the memory interface must be identical to the orders of the corresponding
memory access instructions (i.e., no access reordering for speed optimization—please
note that the Cortex-M0 and Cortex-MO+ processors do not have such access
reordering feature anyway). SO memory regions are always shareable in terms of
architectural definition.

e Memory attributes used to define what type of devices

L8

18

Table 7.3: Default memory attribute map defined by the architecture

Memory

Address Region type Cache XN Shareable Descriptions

0x00000000— CODE Mermal WT — Memaory for program code

0x1FFFFFFF including vector table

0x20000000— SRAM Mormal WEWA — SRAM, typically used for

0x3FFFFFFF data and stack memory

0x40000000— Peripheral Deviee — N — Typically used for on-chip

0x5FFFFFFF devices

0x60000000— RAM Marmal WEWA — Marmal memary with

x7FFFFFFF Write Back, Write Allocate
cache attributes

0x30000000— RAM Marmal WT — Marmal memary with

Ox9FFFFFFF Write Through cache
ateributes

OxADD00000— Device Device — N 5 Shareable device memaory

IxBFFFFFFF

0xC0000000— Device Device — XN — Manshareable device

xDFFFFFFF memaory

0xEQ000000— PPB Strongly — XN 5 Internal Private Peripheral

OxEQOFFFFF ordered Bus

OxE0100000— Reserved Reserved — — — Reserved (Vendor-specific

xFFFFFFFF usage)

Source: [2] Joseph Yiu,

The Definitive Guide to ARM Cortex-MO and Cortex-MO0+ Processors, 2nd Ed., 2015. (Book 2). 19

19
Memory access permission for regions
Table 7.4: Memory access permission
Memory region Default permission Mote
CODE, SRAM, Penipheral, Accessible for both privileged Access permission can be
RAM, Device and unprivileged code. overridden by MPU
configurations
System Control Space Accessible for privileged code Cannot be overridden by MPU
including NVIC, MPU, SysTick anly. Atternpts to access these configurations
registers from unprivileged code
result in HardFault exception.
Source: [2] Joseph Yiu, The Definitive Guide to ARM Cortex-MO0 and Cortex-MO+ Processors, 2nd Ed., 2015. (Book 2). 20
20

10

Memory Protection Unit (MPU)

3.3 Arm® Cortex®-M0+ core with MPU

The Cortex-M0+ processor is an entry-level 32-bit Arm Cortex processor designed for a
broad range of embedded applications. It offers significant benefits to developers, including:

+ asimple architecture that is easy to learn and program
ultra-low pawer, energy-efficient operation
excellent code density

upward compatibility with Cortex-M processor family

L

L]

e deterministic, high-performance interrupt handling

L

« platform security robustness, with integrated Memory Protection Unit (MPU).

Source: MCU Datasheet

21

Memory Protection Unit (MPU)

e Memory Protection Unit (MPU) is a programmable block
inside the processor that defines memory attributes and
memory access permissions.

eMPU is used to detect problems in the system

° e.g., when an application task behaves erroneously by trying to access a memory
location which is invalid or disallowed

e MPU can be used to make an embedded system more robust,
and in some cases make the system more secure by:

° Preventing application tasks from corrupting stack or data memory used by
other tasks

° Preventing unprivileged tasks from accessing certain peripherals
° Defining SRAM or RAM space as nonexecutable to prevent code injection attacks

eMPU is disabled by default)

22

3.10 Direct r?gmq;y\access (DMA)

The flexibleg7-channell general-purpose DMA is able to manage memory-to-memory,
peripheral-tosmemoryand memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.

The DMA can be used with the main peripherals: SPI, 1°C, USART, LPUART,

Direct Memory Access (DMA)

Single Cycle 10

Peripheral bus (APB)

Digital logic
Memories

Dightal Peripherals

Anslogue Mised
Signal Peripherals.

v

ELL

¥

general-purpose timers, DAC, and ADC. ¢

10 pads

Figure 2.6

A system with the Cortex® M0 + Processor and a DMA Controller.

Source: MCU Datasheet 23
23
QOO0 sram
uint8_t buf[20];
HAL UART_ Receive (&¢huart2, buf, 20, HAL MAX DELAY) ; O OOQ UART
Figure 9.1: the flow of data during a transfer from peripheral to SRAM
e CPU will be involved during these operations, even if its role is “limited” to move data from peripheral
to SRAM
e This simplifies design of the hardware, but introduces performance penalties
e Cortex-M core is “responsible” to load data from SRAM to UART peripheral - this is a blocking
operation
e Prevents the CPU from doing other activities
e |t also requires the CPU to wait for “slower” units completing their job
e This is the reason why high-performance MCUs provide DMA controllers
Source: [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022. 24
24

12

system peripheral.

DMA

eDirect memory access (DMA) controller is a bus master and

eThe DMA is used to perform programmable data transfers

between memory-mapped peripherals and/or memories,
upon the control of an off-loaded CPU.

eThe DMA controller features a single AHB master architecture.
eThere is one instance of DMA with 7 channels.

eEach channel is dedicated to managing memory access
requests from one or more peripherals.

eThe DMA includes an arbiter for handling the priority
between DMA requests.

25
Figure 1. System architecture
- MIF
NVM memory
(sEny| Cortex @} —|> Memory interface <—>{
AB.CDEH MO+ < -
Busmatrix
DMA
. Controller |/ g
System architecture (Channels
1Me7) |
The main system consists of: SYSCFG
+ Two masters: < rEmes _ FIREWALL
o 4—» APE buses, PWR
- Cortex™-M0+ core (AHB-lite bus) CRS
— GP-DMA (general-purpose DMA) s Re:lz:nd .Egl'c\
+ Three slaves: = = controlier DAC
I
— Intemal SRAM <

— Intermal Mon-volatile memory
— AHB to APB, which connects all the APB peripherals

NOTE: See lots of
details in MCU
Reference
Manual (Ch.11)

(RCC)

Touch
sensing
controller
(TSC)

|
H ;
ol |6

o .

DMA request

COMP1/2
TIMZ/36/7/21/22
LPTIM1
IWDG
WWDG
RTC
DEGMCU
12C1/2/3
USART 1/ 2/ 4/LPUART1
SPI1/2
USB SRAM
USB FS
LCD

MS3ZT0N2

Source: MCU Reference Manual

26

26

DMA Channels

¢ A channel is used to exchange data between
two memory regions in the 4GB address space. AHB Slave port

(programming interface)

e Peripherals are slave units: they cannot access 2 Abtor
the bus independently.
Channel 1
e A master is always needed to start a

;
transaction.

e A way to notify that the peripherals are ready
to exchange data => dedicated number of DMA
requests lines are available from peripherals to = —
the DMA controller.

Channel 7

Figure 9.3: A representation of the DMA structure in FO/F1/F3/L0/L1/L4 MCUs

Source: [Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

27
typedef struct {
- _DMA_C&:—:rwl_TmeD_ef_ — _*Iﬂstgma; /* Register base address */
l DMA_InitTypeDef Init; /¥ DMA communication parameters */

AL Tockypebef T T TR T /% DMA locking object *y
_ IO HAL_DMA StateTypeDef State; /* DMA transfer state */
void *Parent; /* Parent object state */
void (* XferCpltCallback)(struct _DMA_HandleTypeDef * hdma);
void (* XferHalfCpltCallback)({ struet _DMA_HandleTypeDef * hdma);
void (# XferErrorCallback)(struct __DMA_HandleTypeDef * hdma);
_ ID uint3z2_t ErrorCode; /* DMA Error code */

} DMA_HandleTypeDef;

typedef struct {
uint32_t Direction;
uint32_t Periphlnc;
uint32_t Memlnc;
uint32_t PeriphDataAlignment;
uint32_t MemDataAlignment;
uint32_t Mode;
uint32_t Priority;

} DMA_InitTypeDef; 28

28

14

(1) Perform DMA Transfers in Polling Mode

eOnce we have configured the DMA channel/stream,
we must do few other things:
1. tosetup the addresses on the memory and peripheral port;
2. to specify the amount of data we are going to transfer;
3. toarmthe DMA;
4. to enable the DMA mode on the corresponding peripheral;

oFirst three points by using:
° HAL_StatusTypeDef HAL_DMA _Start(...);

eFourth point is peripheral dependent
29

29

Example 1

eSending a string over UART2 peripheral using
DMA mode

oSteps
1. UART2 is configured using the HAL _UART module

2. DMAI1 channelis configured to do a memory-to-peripheral
transfer

3. Corresponding channel is armed to execute the transfer and
UART is enabled in DMA mode

eSee demo in class (also see Ch.9 of textbook)
30

30

15

interested in);

handler;

3) Enable the corresponding IRQ in the NVIC controller;

4) Use function HAL DMA_Start_IT(), which automatically performs all the necessary
setup steps, passing to it same arguments of HAL_DMA_Start().

(2) Perform DMA Transfers in Interrupt Mode

¢ DMA can generate interrupts related to channel activities

eDMA can be enabled in interrupt mode following steps:

1) Define three functions acting as callback routines and pass them to function
pointers XferCplt-Callback, XferHalfCpltCallback and XferErrorCallback in a
DMA_HandleTypeDef handler (it is ok to define only the functions we are

2) Write ISR for the IRQ associated to the channel you are using and do a call to the
HAL_DMA_IRQHandler() passing the reference to the DMA_HandleTypeDef

eExample 2
° See demo in class (also see Ch.9 of textbook) 31
31
Program Memory Model
Address
Ox3FFFFFFF
Stack
SRAM di:ecgtr):w Stack space
region
SRAM
Heap grow Heap data
direction
Address Data
0x20000000 (e.g. Global variables,
static data, data
structures)
32

16

Program Memory Model

* RAM for an executing program is divided into three
regions:

1) Datain RAM are allocated during the link process and
initialized by startup code at reset

2) The (optional) Heap is managed at runtime by library code
implementing functions such as the malloc and free which
are part of the standard C library

3) The Stack is managed at runtime by compiler generated

code which generates per-procedure-call stack frames
containing local variables and saved registers

33

Program Code

eProgram code can be located in:
°the Code region
°the SRAM region
°the External RAM region
eProgram code typically stored in flash memory
(i.e., code region)

34

17

References & Credits

[Book 1] Carmine Noviello, Mastering STM32, Second Edition, 2022.

[Book 2] Joseph Jiu, The Definitive guide to ARM Cortex-MO and
Cortex-MO+ Processors, 2015.

https://www.st.com/content/st com/en/arm-32-bit-

microcontrollers/arm-cortex-m0-plus.html

STM32L053R8 MCU

— Datasheet
— User Manual

NUCLEO-LO53R8 Board

— User Manual

35

Outline

eRegisters

eMemory map

eMemory protection unit (MPU)
eDirect memory access (DMA)
eProgram memory model

eMemories — basic concepts
36

36

18

https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m0-plus.html
https://www.st.com/content/st_com/en/arm-32-bit-microcontrollers/arm-cortex-m0-plus.html

Memory: basic concepts

* Stores large number of bits
— m x n: m words of n bits each mx_n memory
— k = Log,(m) address input signals
— or m = 2% words
— e.g., 4,096 x 8 memory: [T1T]
* 32,768 bits W

* 12 address input signals
* 8 input/output data signals

m words

memory external view

* Memory access MW~ Jxnread and
— r/w: selects read or write enable T write memory
— enable: read or write only when P —

asserted A T
— multiport: multiple accesses to I I II

different locations simultaneously

37
Memory: basic categories
Writable?
* Read-Only Memory (ROM):
— Can only be read; cannot be modified (written) by the processor.
Contents of ROM chip are set before chip is placed into the
system.
* Random-Access Memory (RAM):
— Read/write memory. Although technically inaccurate, term is
used for historical reasons. (ROMs are also random access.)
Permanence?
* Volatile memories
— Lose their contents when power is turned off. Typically used to
store program while system is running.
* Non-volatile memories do not.
— Required by every system to store instructions that get executed
when system powers up (boot code).
38

19

Memories Classification

Volatile Memory Non-volatile
Memory
Random Access | Sequential Access Mask-Programmed ROM (PROM)

ERRQM= .

— FIFO EEPROM b) (nonvolatile)

|_SRAM LIFO FLASH |

DRAM Shift Register | JEAA S A
CAM

= Volatile: need electrical power

= Nonvolatile: magnetic disk, retains its stored information after the removal of power
= Random access: memory locations can be read or written in a random order

" AEPROM; erasable.programmable.read:only Memorye, w me

- I EEPROM: electrically erasable programmable read-only memory \

FLASH: memory stick, USB disk

. Acgss_paﬁr?saue_mia-ﬁcﬁsmvmo_me_mor_ysmeamrgﬂr-st—in-first-out (buffer), last-in-first-out

(stack), shift register, content-addressable memory

= Static vs. Dynamic: dynamic needs periodic refresh but is simpler, higher density

= Key Design Metrics:

1.Memory Density (number of bits/mm?2) and Size
2.Access Time (time to read or write) and Throughput
3.Power Dissipation

. ofe
Write-ability and Storage-permanence
[
=
g
©S
‘6 ©
b g Mask-programmed ROM Ideal ‘nemory
[
[-%
f OTP ROM
Life of | o
product
r ——
Tens of EPROM EEPROM I FLASH I
years ° -t e
Battery /]\ Nonvolatile N\‘RAM
life (10T
years)
-
In-system r
programmable SRAM/! DRA"‘
Near -—— -
zero— —_— Write
I I ! ! | | abilify
During External External External External
P In-system, fast
fabrication programmer, programmer, programmer programmer writes
only one time only 1,000s OR in-system, OR in-system, unlimit'ed
of cycles 1,000s block-oriented)
of cycles writes, 1,000s cycles
of cycles
Write ability and storage permanence of memories,
showing relative degrees along each axis (not to scale)
40

20

Write-ability

* Ranges of write ability
— High end
* processor writes to memory simply and quickly
* e.g.,, RAM
— Middle range
* processor writes to memory, but slower
* e.g., FLASH, EEPROM
— Lower range
* special equipment, “programmer”, must be used to write to memory
* e.g., EPROM, OTP ROM
— Lowend
* bits stored only during fabrication
¢ e.g., Mask-programmed ROM
* In-system programmable memory

— Can be written to by a processor in the microcomputer system using
the memory

— Memories in high end and middle range of write ability

41

Storage-permanence

* Range of storage permanence

High end
* essentially never loses bits

* e.g., mask-programmed ROM

Middle range
* holds bits days, months, or years after memory’s power source turned off
¢ e.g.,, NVRAM
Lower range
* holds bits as long as power supplied to memory
¢ e.g.,, SRAM
Low end
* begins to lose bits almost immediately after written — refreshing needed
¢ e.g.,, DRAM
* Nonvolatile memory
— Holds bits after power is no longer supplied

— High end and middle range of storage permanence

42

21

Memory array

Mem | Mem | Mem | Mem |
Cell Cell Cell Cell
I I I 1
Mem || |Mem/|| Mem || |Mem/||
word Cell Cell Cell Cell
lines
[| [| [| | |
Mem]| [Mem}p] [Mem}] [|Mem]]
Cell Cell Cell Cell
I I I 1
Mem || |Mem/|| Mem || |Mem||
Cell Cell Cell Cell
v
bit lines

Different memory types are distinguished by technology for
storing bit in memory cell.

43

Support circuitry

L,
AO]
o
Al S > memory
A2 2 array
< 16 bits (4x4)
A3 2
N |
4:1 mux/demux
OE#
CS# —3
WE#
Control signals: DO

¢ Control read/write of array
¢ Map internal physical array to external configuration (4x4 = 16x1)

44

Interface (1/2)

e Physical configurations are typically square.
° Minimize length word + bit line = minimize access delays.

eExternal configurations are “tall and narrow”. The
narrower the configuration, the higher the pin
efficiency. (Adding one address pin cuts data pins in
half.)

° Several external configurations available for a given capacity.
° 64Kbits may be available as 64Kx1, 32Kx2, 16Kx4,...

45

Interface (2/2)

low-power mode).

eQutput Enable (OE#): Drive value at specified
address onto DO.

oChip Select (CS#): Enables device. If not asserted,
device ignores all other inputs (sometimes entering

e\Write Enable (WE#): Store DO at specified address.

46

23

Memory timing: Reads

tre

>
>

tav

ADDR X X
et \ tes 8

OE#

DATA | X

e Access time: Time required from start of a read access to valid data output.
chip select, output enable)
e Time to valid data out depends on which of these is on critical path.

o tzc: Minimum time required from start of one access to start of next.
° For most memories equal to access time.

° Access time specified for each of the three conditions required for valid data output (valid address,

47
[J [] [J
Memory timing: Writes
twe
) taw ~ '
ADDR) X
R tew E
CS# \‘ >
_—bu twe Ly
WE# ths '\ y
DATA
< tos =:tDT-|
e Write happens on rising edge of WE#
e Separate access times t,, tew twe Specified for address valid, CS#, WE#.
o Tylpcilcally, tas = 0, meaning that WE# may not be asserted before address is
valid.
e Setup and hold times required for data.
e Write cycle time ty is typically in the order of t,,.
48

24

Memory Comparison

Memory Read |Write Volatility |Density | Power |Rewrite
Type Speed | Speed

+++ +++ - - ++
DRAM + + -- ++ - ++
EPROM |+ - + + -

+ - + + +

+ + + + +

49
" ”
ROM: “Read-Only” Memory
* Nonvolatile
* Can be read from but not written to
External view
enable —>| 2xnROM
Ao —
* Uses Ay
— Store software program for general-purpose processor Ql"l HQQ
— Store constant data (parameters) needed by system !
— Implement combinational circuits (e.g., decoders)
50

25

Example: 8 x 4 ROM

Horizontal lines = words

Vertical lines = data Internal view
Lines connected only at circles 8x4 ROM
. . word 0
Decoder sets word 2’s line to 1if enae {,} 8 | ¥ 3.3] word
. . f 1 word2
address input is 010 % o Lt < wordiine
i L NSNS S
Data lines Qz and Qi are set to 1 2 —> edd
: SUSS TS
because there is a “programmed” — SR doaine
connection with word 2’s line programmable
Word 2 is not connected with data & @ e

lines Q2 and Qo
Output is 1010

51

Mask-programmed ROM

Connections “programmed” at fabrication
— set of masks
Lowest write ability

— onlyonce

Highest storage permanence

— bits never change unless damaged
Typically used for final design of high-volume systems

— spread out NRE (non-recurrent engineering) cost for a low unit cost

52

26

OTP ROM: One-time programmable ROM

* Connections “programmed” after manufacture by user
— user provides file of desired contents of ROM

file input to machine called ROM programmer

each programmable connection is a fuse

— ROM programmer blows fuses where connections should not exist
* Very low write ability

— typically written only once and requires ROM programmer device
* Very high storage permanence

— bits don’t change unless reconnected to programmer and more fuses
blown

* Commonly used in final products
— cheaper, harder to inadvertently modify

53

EPROM: UV Erasable programmable ROM

Programmable component is a MOS transistor
— Transistor has “floating” gate surrounded by an insulator

:

1
144

— (a) Negative charges form a channel between source and drain
storing a logic 1

5983938,

— (b) Large positive voltage at gate causes negative charges to
move out of channel and get trapped in floating gate storing a
logic 0

— (c) (Erase) Shining UV rays on surface of floating-gate causes
negative charges to return to channel from floating gate
restoring the logic 1 ©00000

— (d) An EPROM package showing quartz window through which (b) RN : © R
UV light can pass
Better write ability H% ;; 5-30 min
— can be erased and reprogrammed thousands of times

+15V

Reduced storage permanence

— program lasts about 10 years but is susceptible to
radiation and electric noise

Typically used during design development (d)

54

27

Sample EPROM components

yesazt |

¥20L10 ®

55

[\ |eop-mes
L SUN mee] PORTHBLE EPRON PROGRAMMER

56

28

: Electrically erasable programmable ROM

* Programmed and erased electronically
— typically by using higher than normal voltage
— can program and erase individual words

* Better write ability

— can be in-system programmable with built-in circuit to provide higher than normal voltage
* built-in memory controller commonly used to hide details from memory user

— writes very slow due to erasing and programming
* “busy” pin indicates to processor EEPROM still writing

— can be erased and programmed tens of thousands of times
* Similar storage permanence to EPROM (about 10 years)
* Far more convenient than EPROMs, but more expensive

57
* Extension of EEPROM
— Same floating gate principle
— Same write ability and storage permanence
* Fast erase
, rather than one word at a time
— Blocks typically several thousand bytes large
* Writes to single words may be slower
— Entire block must be read, word updated, then entire block written back
58

29

FLASH applications

e Flash technology has made rapid advances in recent
years.
° cell density rivals DRAM; better than EPROM; much better than EEPROM
° multiple gate voltages can encode 2 bits per cell.
° many-GB devices available

¢ ROMs and EPROMs rapidly becoming obsolete.

e Replacing hard disks in some applications.
° smaller, lighter, faster
° more reliable (no moving parts)

cost effective

o

e PDAs, cell phones, laptops, iPods, etc...

59
. . external view
¢ Typically volatile memory]
— bits are not held without power supply enable memory
+ Read and written to easily by microprocessor fo —
during execution Pt I I II
* Internal structure more complex than ROM M L
-1
— aword consists of several memory cells, each
. . internal view
storing 1 bit oL I
— each input and output data line connects to each ot |
cell in its column
ena\ble__> 2x4
— rd/wr connected to every cell d
Ay —»
— when row is enabled by decoder, each cell has Ao
logic that stores input data bit when rd/wr Mec:‘l‘l”y
indicates write or outputs stored bit when rd/wr /W10 every cell
indi VYV
indicates read q, 0,q q,
60

30

Basic Types of RAM: SRAM vs. DRAM

e SRAM Cell e DRAM Cell
addr | T T raw select raw enable
bit line data bit line bit line
e Larger cell = lower density, higher e Smaller cell = higher density, lower
cost/bit cost/bit
¢ No dissipation ¢ Needs periodic refresh, and refresh

e Read non-destructive after read

* No refresh required e Complex read = longer access time

e Special IC process = difficult to

e Simple read = faster access N d — o
integrate with logic circuits

e Standard IC process = natural for
integration with logic

61

RAM variations

* PSRAM: Pseudo-static RAM
— DRAM with built-in memory refresh controller
— Popular low-cost high-density alternative to SRAM
* NVRAM: Nonvolatile RAM
— Holds data after external power removed
— Battery-backed RAM
* SRAM with own permanently connected battery
* writes as fast as reads
* no limit on number of writes unlike nonvolatile ROM-based memory
— SRAM with EEPROM or FLASH
* stores complete RAM contents on EEPROM or FLASH before power turned off

62

31

Dual-port RAM (DPRAM)

e Usually a Static RAM circuit with two address and data bus
connections

— Shared RAM for two independent users
* Flexible communication link between two processors
— Master/slave

L R
pata | DATA
190 110 cPU

cPU
OR oA

/O DEVICE VO DEVICE
bT g

ADDRESS * pusLFoRT — | jooress
M oo
RAY AR MEMORY > [
e CELLS

—l CONTRCL LOGIC

]

63

DDR1 SDRAM, DDR?2, ...

e Double Data Rate synchronous dynamic random access
memory (DDR1 SDRAM) is a class of memory integrated
circuits used in computers.

e The interface uses double pumping ﬁransferring data on
both the rising and falling edges of the clock signal) to lower
the clock frequency

¢ One advantage of keeping the clock frequency down is that
it reduces the signal integrity requirements on the circuit
board connecting the memory to the controller

¢ DDR2 memory is fundamentally similar to DDR SDRAM

¢ DDR2 SDRAM can perform four transfers per clock using a
multiplexing technique

64

32

	Slide 1: Lecture 10 Memory
	Slide 2: Outline
	Slide 3
	Slide 4: Processor “Register Set”
	Slide 5
	Slide 6: Cortex-M0+ Processor: Memory Addressing
	Slide 7: Example of MCU that uses Cortex-M0+ Processor
	Slide 8: Separation of main system bus and peripheral bus
	Slide 9
	Slide 10
	Slide 11: STM32L053R8 - Datasheet
	Slide 12: NUCLEO-L053R8
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Memory Attributes and Memory Access Permission
	Slide 17: Memory Attributes
	Slide 18: Memory Attributes
	Slide 19
	Slide 20: Memory access permission for regions
	Slide 21: Memory Protection Unit (MPU)
	Slide 22: Memory Protection Unit (MPU)
	Slide 23: Direct Memory Access (DMA)
	Slide 24: Need for DMA
	Slide 25: DMA
	Slide 26
	Slide 27: DMA Channels
	Slide 28: HAL DMA Module
	Slide 29: (1) Perform DMA Transfers in Polling Mode
	Slide 30: Example 1
	Slide 31: (2) Perform DMA Transfers in Interrupt Mode
	Slide 32
	Slide 33
	Slide 34: Program Code
	Slide 35
	Slide 36: Outline
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Memory timing: Reads
	Slide 48: Memory timing: Writes
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: DDR1 SDRAM, DDR2, …

