HPS+FPGA Systems on
DE1-SoC Board

Cristinel Ababei
Marquette University

HPS+FPGA Systems

* Projects that use both the Hardware Processor System (HPS) and the
FPGA component

* Software needed (on Windows 10):

¢ Quartus Prime Lite Edition

* Use Platform Designer (used to be called Qsys) to instantiate and connect HPS
component(s).

* Synthesize FPGA project and program FPGA
* Intel SoC FPGA Embedded Development Suite (SoC EDS) — Standard Edition

* Comprehensive tool suite for embedded software development on Intel FPGA SoC
devices

* Write C code, compile, copy executable on microSD card, and execute

* Arm Development Studio (DS) - Intel SoC FPGA Edition

* Arm Development Studio is an embedded C/C++ development toolchain designed
specifically for Arm-based SoCs, from tiny microcontrollers to custom multicore
processors.

Cyclone V SoC FPGA Device

Normal Type-8

- @
|
SDRAM x16 64 MB

«—30_,

VGA B b1

ad
e

- "
FPGA
=] HPS 12C 2
x2
From HPS_Tswitch Control
CE——

FPGA

T
e

Micro
X6 1 SD Card
| A |

RGM” ﬁ_ Uy Ethemet
cmmggﬁv

SCSEMA!

naﬁiiﬁ
USB Host
Normal Type-A| = d

DDR3

5F31C6N

SDRAM x32 1

GB

—
x3

o

HPS

o] [o o [o]

Push Button x4

RRRRARARE

x10

—

200 20 2 2
BEEBEHE

xa2

M 2x7 LTC Header
Tn
e

o
User RST

Button

HPS
User LED RST

I i

I 235333831
(AR NRRNN]
LEDx10

7-Segment Display x6

Cyclone V Peripheral Connections

‘ max LeD ||Dipsw|| P8 || uss2 %m"
Header
%?%+tmn MIM (3:0) m;m’w|
aed USB Intertace A A i A Real-Time
Clock
| | =
' A\ '
Character
LCD
HPS f¢ L LTC Power
SPI+ I°C
o' .| LTC ExpHar
©
Cyclone™ o [[IRZENE
SoC
FPGA
//
7/
i WETN)
ADDR = % L = - =
- i : HEIE IR
E 7 vYOly vy
s PCI> @ﬁhﬁ
NOR V| | EXPRESS o n”
Flash | | PO » Port A A

HPS

* HPS is a hard logic microprocessor unit (MPU) consisting of:
* Dual-core ARM Cortex-A9 processor
* On-chip memories
* SDRAM
* L3 interconnect
* Support and interface peripherals

* The HPS will be used to execute the software portion of your SoC
design

FPGA

* FPGA component consists of:
* FPGA fabric
* Standard FPGA components (LUTs, CLBs, PLL etc.)
* Shared memory controllers
* General peripherals

* The FPGA is used to prototype hardware for your SoC design,

receiving and sending data to and from the HPS using AXI buses,
bridges, and Avalon master-slave devices

Block Diagram of Intel Altera SoC FPGA

Altera SoC FPGA Device
HPS Portion FPGA Portion
B B el e e DR B <] B <] D] <] B D] D) B D]
Flash SDRAM Controller
Controllers Subsystem Control| User HSSI
Block Ie] Transceivers
Cortex-A9 MPU Subsystem
HPS-FPGA
Interfaces FPGA Fabric
On-Chip Support (LUTs, RAMSs, Multipliers & Routing)
Memories Peripherals
Interface Hard Hard Memory
PLLs . Debu PLLs
Peripherals ° PCle Controllers
DT DT TXT <] TRT DT TXT DT DT DT BT BT] DT T AT T O] BT O] DT T DT TXT T I

Figure 7-1. Altera SoC FPGA Device Block Diagram (2, pp. 1-1]

HPS-FPGA Communication Interfaces: AXI Bridge

32,64, or 128 Bits

I —

32 Bits 32, 64, or 128 Bits
(h2f_axi_clk) (h2f_tw_axi_clk) (h2f_axi_clk)
M 32 Bits 32 Bits s
AXI s (14_mp_clk) (4_mp_clk) s AXI
AHB AHB
(GPV) M M M (GPV)
HPS-to-FPGA AHB AXI AHB FPGA-to-HPS
Bridge Lightweight Bridge
HPS-to-FPGA Bridge
S S M
P
AXI AXI (GEV) AXI
K
64 Bits 32 Bits 64 Bits
(13_main_clk) (14_mp_clk) 3_main_clk)
M M S
AX] AXI AXI
(L3 Main Switch) (L3 Slave Peripheral Switch) (L3 Main Switch)
L3 Interconnect

Figure 1-1 AXI Bridge Block Diagram

HPS-FPGA Communication

* HPS logic and the FPGA fabric are connected through a series of AXI
(Advanced eXtensible Interface) Bridges

* There are 3 main bridges used for communication:
1. FPGA-to-HPS bridge (f2h)
2. HPS-to-FPGA bridge (h2f)
3. Lightweight HPS-to-FPGA bridge (lwh2f)

* Slaves are allowed to communicate back to the HPS through the FPGA-to-
SDRAM connections provided by the FPGA's Avalon Memory Mapped (MM)
Master

* Intel Altera system integration tool Platform Designer(previously called Qsys)
is used to design the system and the communication between HPS and FPGA

9
P ¢ fozewn oz : Hard Processor System (HPS)
FPGA |[FPGA0HPS| |HPS1oFPGA| | LWHPSH-
% 3 A ARM Cortex-A9 ARM Cortex-A9 usB
Mosmger || Bodoe: rind NEON/ FPU NEON/ FPU oTG E&‘;{{,‘f‘
L1 Cache L1 Cache (x2) O
An-2 AX-BL AX-2
N 7
L3 Interconnect e L L2 cache GPIO (ng)
- (NIC-301) RM Corte C 3
AR w
CPUO | CPUH QSPI JTAG 5
Flash g Debug/ <) f:z'; 8
(E:, 22 AN ACFID ACP SoU Control Trace(!)
Mapper
- ';::hslg Ssl:)::él Timers DMA UART
.. 13 Mmd 12 Cacte na MMC) (x11) (8 Channels) (x2)
—1 ac o] aster
ANSL
Peripheral L3 Main Switch L - 7 4 [FPGA
Switch Shared Multiport DDR HPS to FPGA Configu
© jan 22
g:; o i pro EI A %’/SD}!\AM Controller lﬂ\ FPGA to HPS e
oS Azl e UV \/E M
o g AWB. u m“
z Controller n
A4 On<chip +28LP process -
a RAM [+ 8-input ALMs g
A + Variable-precision DSP o
| NAND 22 Ly, * M10Kmemory and g
“-ﬂl = AnM 640-bit MLABS 2
r AR I - fPLLs %
AHB-2 E
NMBD L3 Slave Peripheral Switch A l ﬂ ﬂ §
T = B 3 =
v |] L4, APB-32 S

Hard Multiport DDR 3-, 5-, 6-,
SDRAM Controller (2 and 10-Gbps
Transceivers

TEGOL S

Fig. 2: HPS/FPGA Bus and Bridge Communication Block Diagram

10

HPS-FPGA Communication

* HPS supports communication with the FPGA/peripherals through the L3
interconnect, which is connected to the HPS (DDR3) SDRAM Controller.

* Therefore, it is essential that SDRAM pins are configured correctly so that the
HPS may read/write data to/from the SDRAM controller and establish
communication between the L3 interconnect and FPGA.

* Once all hardware has been correctly prototyped, communication between
the HPS and FPGA is programmed through a memory mapped C application.

* Memory mapping allows the CPU to view and access the FPGA's address
space (containing our components) so that we may read/write information
as necessary, controlling the hardware through software.

* The C application you will develop uses APIs to send write (or receive read)
data to (and from) specified memory addresses.

11

HPS-FPGA Communication

* Each of the IP components you add to your system possess a base address.

* You will use the base addresses to access, control, and send data to and from
your SoC components using your C application.

* These addresses will be generated for you as header files using the NIOS I
Command Shell.

* Common base addresses given in Table below:

Table I: Common Address Space Regions for Bridge Access

Region Name Description Base Address Size
FPGA Slaves For accessing FPGA slaves connected to the h2f 0xC0000000 960MB
bridge
HPS Peripherals Accessing slaves directly connected to the HPS 0xFC000000 64MB
Lightweight FPGA Slaves Accessing slaves connected to the Iwh2f bridge 0xFF200000 2MB

12

General Design Flow

* Once your C application is complete, a binary is generated by compiling your
software on a host computer.

* The binary must be placed on the microSD card.

* This can be done also by first placing the binary on a USB drive, which will be inserted
and mounted to the HPS/FPGA system. You must then copy the binary from the USB to
your HPS home directory to execute the application.

* Note: There are several ways to copy executables to the micro SD card; see separate
tutorial on dejazzer.
* Upon execution, the HPS will communicate with the FPGA prototype based
on the APIs and functionality you have coded in your C application.

* You may access and interact with the HPS/Linux OS from your host computer
using a serial connection (Putty or minicom or the DS-5 terminal).

13

General Design Flow

* There are many steps to follow for designing an HPS+FPGA SoC

* A structured block diagram outlining the general tools used for the
hardware and software flows is shown below:

HPS/FPGA
Design
. J
HPS/ FPGA/

C RTL

[
h J Y ‘
NIOS I DS-5

A 4
- Quartus
Shell | | Project | ’M'”'C"m‘ o QSys
b I
. Yocto
— Binary | £ Linux

Fig. 4: Tools and Flow used for DE1-SoC Design

14

Physical Address Mapping

FPGA
(Default) to SDRAM
HPSSlaves | por Lw | HPS Slaves OB
0xFF20_0000 S
H2F FPGA Slaves H2F FPGA Slaves

0xC000_0000 3GB

0x8000_0000 2GB

1GB

ACP: Accelerator
0x0000_0000 0GB Coherency Port
Default remap to 0x0 Remaps as
RAM & ROM or SDRAM
15
0x CO000000 - 0x FBFFFFFF | Slaves via HP AXI Bridge |
Memory
oo sosmsomstooooooooooog 0x FF200000 - 0x FF3FFFFF | Slaves via LW AXI Bridge |
ADDRESS DATA |

Il CTTTTTTTTTTTTTTTTTTTTTTTTSSToTTTToTTTTTTTToToTmmEocmemETTEY
(x 00000000 | etaEEE] i ! 0x FF704000 - 0x FF7043FF | SDMMC Module | !
1 |

0x FF704000 01001011

SDMMC
Module

1
|
)
\:,\
0x FF704001 1101 0010 __“
1
;
1
‘e

0x FF7043FF | 0100 1011

| 0x FFFFFFFF | 1001 1001 l

0x FF705000 - 0x FF7050FF

0x FF708000 - 0x FF70A07F

0x FFB0000O - 0x FFB7FFFF

0x FFFE0000 - 0x FFEO1FFF

0x FFFD000O - 0x FFFDFFFF

0x FFFD0000 - 0x FFFFFFFF

GPIO Module

USB OTG Controller

DMA Module

Boot ROM Module

On-Chip RAM Module

16

Custom Logic Binding

1. Custom Logic can be a master
or slave

Ethernet
PHY

Processor

Avalon-MM
Master

Ethernet MAC

Avalon-MM
Master

:

.

!" Custom Logic
f

§ Avalon-MM i
\ Master ;

3 Interconnect | i
. 3 e
2. Usually NIOS CPU (Soft IP) is i : ! : ! 4 RN
! Avalon-MM Avalon-MM Avalon-MM Avalon-MM Avalon-MM A
Ava IO n_ M M M a Ste r 1 Slave Slave | Slave | Slave | i Slave | i
1 Flash SRAM RAM i Custom !
H } @ 1l Ci ller i ller UART Logi I
3. Usually any custom I/O is | "t l onroler ontroler e
Ava IO n- IVI IVI S I ave i Tristate Conduit Slave o E
1 Tristate Conduit Pin Sharer & H
s Tristate Conduit Bridge E
| e consurmasr :
: Tristate Conduit Master Avalon MM System ;
Y
Tri Tri RAM X
Cong:lsi::aﬁtfave Com;:lsittastelave Memory Iﬂ‘
Flash SRAM
Memory Memory
17
Name Width Direction | Comments
avs_address 64 bits Input Address of slave being accessed
avs_read 1 bit Input Read operation requested
avs_write 1 bit Input Write operation requested
avs_readdata 8, 16, 32, or 64 bits Output Data read from slave
avs_writedata | 8, 16, 32, or 64 bits Input Data to be written to slave

Read Waveforms:

tlk | l | | | l

read / | W
write

address X A0 X

readdata X oo X

Write Waveforms:

clk

read

write / \
address X X
writedata X_Do X

18

References

Sahand Kashani-Akhavan, SoC FPGA Design Guide, DE1-SoC,
https://github.com/sahandKashani/SoC-FPGA-Design-Guide

Systems-on-Chip Design COE838 / EE8221, Ryerson University,
https://www.ee.ryerson.ca/%7Ecourses/coe838/announcements.html

ECE 5760, Advanced Microcontroller Design and system-on-chip, Cornell,
https://people.ece.cornell.edu/land/courses/ece5760

19

User space: main.c: >HEX counter & dimming

>Uses mmap

>Needs C-Header generated with Terasic script
>Compile and place binary on SD card

LightWeight HPS-to-

FPGA
ARM Amba AXI Bus

Master

avs_s0_address

—avs_sQ readdata — -~ oo
| avssOwite :

avs_s0_writedata
avs_s0_waitrequest

del_soc_top.vhd

Avalon-MM Simple Slave
>New Component created with Qsys
>seven_segment.vhd as wrapper around
seven_segment_implementation.vhd (custom VHDL
! logic to listen to Avalon-MM Bus and control 7-
: segment LEDs as dictated from within main.c)
i >Base address: 0X00040000

soc_system.vhd
Generateg by Qsys

--------------------------------- -output-seven_segment-export---

7-segment LED display on DE1-SoC Board

20

10

https://github.com/sahandKashani/SoC-FPGA-Design-Guide
https://www.ee.ryerson.ca/~courses/coe838/announcements.html
https://people.ece.cornell.edu/land/courses/ece5760

	Slide 1: HPS+FPGA Systems on DE1-SoC Board
	Slide 2: HPS+FPGA Systems
	Slide 3: Cyclone V SoC FPGA Device
	Slide 4: Cyclone V Peripheral Connections
	Slide 5: HPS
	Slide 6: FPGA
	Slide 7: Block Diagram of Intel Altera SoC FPGA
	Slide 8: HPS-FPGA Communication Interfaces: AXI Bridge
	Slide 9: HPS-FPGA Communication
	Slide 10
	Slide 11: HPS-FPGA Communication
	Slide 12: HPS-FPGA Communication
	Slide 13: General Design Flow
	Slide 14: General Design Flow
	Slide 15: Physical Address Mapping
	Slide 16: Cyclone V HPS Memory Map
	Slide 17: Custom Logic Bindings
	Slide 18: Avalon-MM Slave Interface
	Slide 19: References
	Slide 20

