HPS+FPGA Systems on DE1-SoC Board

Cristinel Ababei Marquette University

HPS+FPGA Systems

 Projects that use both the Hardware Processor System (HPS) and the FPGA component

• Software needed (on Windows 10):

- Quartus Prime Lite Edition
 - Use Platform Designer (used to be called Qsys) to instantiate and connect HPS component(s). Note: Earlier the NIOS II softcore processors were used instead of HPS.
 - Synthesize FPGA project and program FPGA
- Intel SoC FPGA Embedded Development Suite (SoC EDS) Standard Edition
 - Comprehensive tool suite for embedded software development on Intel FPGA SoC devices
 - Write C code, compile, copy executable on microSD card, and execute
- Arm Development Studio (DS) Intel SoC FPGA Edition
 - Arm Development Studio is an embedded C/C++ development toolchain designed specifically for Arm-based SoCs, from tiny microcontrollers to custom multicore processors.

HPS

• HPS is a hard logic microprocessor unit (MPU) consisting of:

- Dual-core ARM Cortex-A9 processor
- On-chip memories
- SDRAM
- L3 interconnect
- Support and interface peripherals
- The HPS will be used to execute the software portion of your SoC design

5

FPGA

- FPGA component consists of:
 - FPGA fabric
 - Standard FPGA components (LUTs, CLBs, PLL etc.)
 - Shared memory controllers
 - General peripherals
- The FPGA is used to prototype hardware for your SoC design, receiving and sending data to and from the HPS using AXI buses, bridges, and Avalon master-slave devices

HPS-FPGA Communication

- HPS supports communication with the FPGA/peripherals through the L3 interconnect, which is connected to the HPS (DDR3) SDRAM Controller.
- Therefore, it is essential that SDRAM pins are configured correctly so that the HPS may read/write data to/from the SDRAM controller and establish communication between the L3 interconnect and FPGA.
- Once all hardware has been correctly prototyped, communication between the HPS and FPGA is programmed through a memory mapped C application.
- Memory mapping allows the CPU to view and access the FPGA's address space (containing our components) so that we may read/write information as necessary, controlling the hardware through software.
- The C application you will develop uses APIs to send write (or receive read) data to (and from) specified memory addresses.

11

HPS-FPGA Communication

- Each of the IP components you add to your system possess a base address.
- You will use the base addresses to access, control, and send data to and from your SoC components using your C application.
- These addresses will be generated for you as header files using the NIOS II Command Shell.
- Common base addresses given in Table below:

Region Name	Description	Base Address	Size
FPGA Slaves	For accessing FPGA slaves connected to the h2f bridge	0xC0000000	960MB
HPS Peripherals	Accessing slaves directly connected to the HPS	0xFC000000	64MB
Lightweight FPGA Slaves	Accessing slaves connected to the lwh2f bridge	0xFF200000	2MB

General Design Flow

- Once your C application is complete, a binary is generated by compiling your software on a host computer.
- The binary must be placed on the microSD card.
 - This can be done also by first placing the binary on a USB drive, which will be inserted and mounted to the HPS/FPGA system. You must then copy the binary from the USB to your HPS home directory to execute the application.
 - Note: There are several ways to copy executables to the micro SD card; see separate tutorial on dejazzer.
- Upon execution, the HPS will communicate with the FPGA prototype based on the APIs and functionality you have coded in your C application.
- You may access and interact with the HPS/Linux OS from your host computer using a serial connection (Putty or minicom or the DS-5 terminal).

References

- 1. Sahand Kashani-Akhavan, SoC FPGA Design Guide, DE1-SoC, https://github.com/sahandKashani/SoC-FPGA-Design-Guide
- 2. Systems-on-Chip Design COE838 / EE8221, Ryerson University, https://www.ee.ryerson.ca/%7Ecourses/coe838/announcements.html
- 3. ECE 5760, Advanced Microcontroller Design and system-on-chip, Cornell, https://people.ece.cornell.edu/land/courses/ece5760

