
1

EECE-4740/5740 Advanced VHDL and FPGA Design

Lecture 3

Combinational and Sequential Circuits I

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

Overview

▪ Combinational circuits

• Multiplexer, decoders, encoders, adders,

comparators

▪ Sequential circuits

• Regular sequential circuits

• Finite State Machines

1

2

2

A VHDL Template for Combinational Logic

entity model_name is

 port(list of inputs and outputs);

end model_name;

architecture arch_name of model_name is

begin

 concurrent statement 1

 concurrent statement 2

 ...

 concurrent statement N;

end arch_name;

2-to-1 Multiplexer

f

s

w
0

w
1

0

1

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS

 PORT (w0, w1, s : IN STD_LOGIC;

 f : OUT STD_LOGIC);

END mux2to1;

ARCHITECTURE dataflow OF mux2to1 IS

BEGIN

 f <= w0 WHEN s = '0' ELSE w1;

END dataflow ;

3

4

3

4-to-1 Multiplexer

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY mux4to1 IS

 PORT (w0, w1, w2, w3: IN STD_LOGIC;

 s: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

 f: OUT STD_LOGIC);

END mux4to1 ;

ARCHITECTURE dataflow OF mux4to1 IS

BEGIN

 WITH s SELECT

 f <= w0 WHEN "00",

 w1 WHEN "01",

 w2 WHEN "10",

 w3 WHEN OTHERS;

END dataflow

f

s
1

w
0

w
1

00

01

s
0

w
2

w
3

10

11

2-to-4 Decoder

0

0

1

1

1

0

1

y
3

w
1

0

w
0

x x

1

1

0

1

1

En

0

0

1

0

0

y
2

0

1

0

0

0

y
1

1

0

0

0

0

y
0

0

0

0

1

0

w
1

En

y
3

w
0

y
2

y
1

y
0

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dec2to4 IS

 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

 En : IN STD_LOGIC;

 y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0));

END dec2to4 ;

ARCHITECTURE dataflow OF dec2to4 IS

 SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN

 Enw <= En & w ;

 WITH Enw SELECT

 y <= “0001" WHEN "100",

 "0010" WHEN "101",

 "0100" WHEN "110",

 “1000" WHEN "111",

 "0000" WHEN OTHERS;

END dataflow;

5

6

4

4-bit Number Comparator: Unsigned

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY compare IS

 PORT (A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 AeqB, AgtB, AltB: OUT STD_LOGIC);

END compare;

ARCHITECTURE dataflow OF compare IS

BEGIN

 AeqB <= '1' WHEN A = B ELSE '0';

 AgtB <= '1' WHEN A > B ELSE '0';

 AltB <= '1' WHEN A < B ELSE '0';

END dataflow;

4

4

A

B

AeqB

AgtB

AltB

4-bit Number Comparator: Signed

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

ENTITY compare IS

 PORT (A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

 AeqB, AgtB, AltB: OUT STD_LOGIC);

END compare;

ARCHITECTURE dataflow OF compare IS

BEGIN

 AeqB <= '1' WHEN A = B ELSE '0';

 AgtB <= '1' WHEN A > B ELSE '0';

 AltB <= '1' WHEN A < B ELSE '0';

END dataflow;

7

8

5

Tri-state Buffer

x f

e

0

0

1

1

0

1

0

1

Z

Z

0

1

f e x

ENTITY tri_state IS

PORT (e: IN STD_LOGIC;

x: IN STD_LOGIC;

f: OUT STD_LOGIC);

END tri_state;

ARCHITECTURE dataflow OF tri_state IS

BEGIN

 f <= x WHEN (e = ‘1’) ELSE ‘Z’;

END dataflow;

Priority Encoder

w 0

w
3

y 0

y 1

d

0

0

1

0

1

0

w0 y1

d

y0

1 1

0

1

1

1

1

z

1

x

x

0

x

w1

0

1

x

0

x

w2

0

0

1

0

x

w3

0

0

0

0

1

z

w 1

w 2

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

 PORT (w: IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

 y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

 z: OUT STD_LOGIC) ;

END priority ;

ARCHITECTURE dataflow OF priority IS

BEGIN

 y <= "11" WHEN w(3) = '1' ELSE

 "10" WHEN w(2) = '1' ELSE

 "01" WHEN w(1) = '1' ELSE

 "00" ;

 z <= '0' WHEN w = "0000" ELSE '1' ;

END dataflow ;

9

10

6

Most often implied structure

target_signal <= value1 when condition1 else

 value2 when condition2 else

 . . .

 valueN-1 when conditionN-1 else

 valueN;

When - Else

Value N

Value N-1

Condition N-1

Condition 2

Condition 1

Value 2

Value 1

Target Signal

…

Most often implied structure

with choice_expression select

 target_signal <= expression1 when choices_1,

 expression2 when choices_2,

 . . .

 expressionN when choices_N;

With - Select - When

choices_1

choices_2

choices_N

expression1

target_signal

choice expression

expression2

expressionN

11

12

7

Overview

▪ Combinational circuits

• Multiplexer, decoders, encoders, adders,

comparators

▪ Sequential circuits

• Regular sequential circuits

• Finite State Machines

Sequential Circuits

▪ Regular sequential circuits

• Sequential circuits

• Storage elements: Latches & Flip-flops

• Registers and counters

▪ Circuit and System Timing

▪ Finite State Machines (FSMs)

• State tables & state diagrams

13

14

8

Sequential circuits – general description

▪ A Sequential circuit contains:
• Storage elements: Latches or Flip-Flops

• Combinational Logic: implements a multiple-output
switching function
▪ Next state function: Next State = f(Inputs, State)
▪ Output function: two types
 Mealy: Outputs = g(Inputs, State)

 Moore: Outputs = h(State)

Combina-

tional Logic

Inputs Outputs

State
Next

state
Storage

Elements

Latches

S (set)

R (reset)
Q

Q

Basic S-R latch

S

R

Q

C

Q

Clocked S-R latch

D
Q

C

Q

D latch

Basic S-R latch

Q
S (set)

R (reset) Q

15

16

9

Edge-Triggered D Flip-Flop

▪ The change of Q is
associated with the negative
edge at the end of the pulse
- negative-edge triggered
flip-flop.

C

S

R

Q

Q
C

Q

QC

D QD

Q

D

C

Triggered D

Q

Clock

D

QD

Modelling of Flip-Flops

Library IEEE;

use IEEE.Std_Logic_1164.all;

entity FLOP is

 port (D, CLK : in std_logic;

 Q : out std_logic);

end FLOP;

architecture A of FLOP is

begin

 process

 begin

 wait until CLK’event and CLK=‘0’;

 Q <= D;

 end process;

end A;

17

18

10

Direct Inputs

▪ At power-up or at reset, sequential

circuit usually is initialized to a

known state before it begins

operation

• Done outside of the clocked behavior

of the circuit (i.e., asynchronously).

• Direct R/S inputs

▪ For the example flip-flop shown

• 0 applied to R resets the flip-flop to the

0 state

• 0 applied to S sets the flip-flop to the 1

state

D

C

S

R

Q

Q

Positive Edge-triggered D Flip-flop with

Asynchronous Set/Reset

library IEEE;

use IEEE.std_logic_1164.all;

entity ASYNC_FF is

 port (D, CLK, SETN, RSTN : in std_logic;

 Q : out std_logic);

end ASYNC_FF;

architecture RTL of ASYNC_FF is

begin

 process (CLK, RSTN, SETN)

 begin

 if (RSTN = `1`) then

 Q <= `0`;

 elsif SETN ='1' then

 Q <= '1';

 elsif (CLK’event and CLK = ‘1’) then

 Q <= D;

 end if;

 end process;

end RTL;

19

20

11

Registers

▪ Register: the simplest storage component in a
computer, a bit-wise extension of a flip-flop.

▪ Registers can be classified into
• Simple Registers

• Parallel-Load Registers

• Shift Registers

D3 Q
3

D2 Q
2

D1 Q
1

D0 Q
0

I3 I2 I1 I0

Q3 Q2 Q1 Q0
clk

Q3 Q2 Q1 Q0

I3 I2 I1 I0 Clk

– A simple register consists of N
flip-flops driven by a common
clock signal.

– Has N inputs and N outputs in
addition to the clock signal.

Simple Registers

21

22

12

D3 Q
3

D2 Q
2

D1 Q
1

D0 Q
0

I3 I2 I1 I0

Q3
Q2 Q1 Q0

clk

Clear

Preset

Q3 Q2 Q1 Q0

I3 I2 I1 I0
clk

clear

Preset

Register with asynchronous preset and clear

Library ieee;

USE ieee.std_logic_1164.all;

ENTITY simple_register IS

 GENERIC (N : INTEGER := 4);

 PORT (I : IN STD_LOGIC_VECTOR (N-1 DOWNTO 0);

 Clock, Clear, Preset : IN STD_LOGIC;

 Q : OUT STD_LOGIC_VECTOR (N-1 DOWNTO 0));

END simple_register;

ARCHITECTURE simple_memory OF simple_register IS

BEGIN

PROCESS (Preset, Clear, Clock)

BEGIN

 IF Preset = ‘0' THEN

 Q <= (OTHERS => ‘1');

 ELSIF Clear = '0' THEN

 Q <= (OTHERS => '0');

 ELSIF (Clock'EVENT AND Clock = '1') THEN

 Q <= I;

 END IF;

END PROCESS;

END simple_memory;

23

24

13

Parallel Load Registers

▪ In the previous registers, new data is stored

automatically on every rising edge of the clock.

▪ In most digital systems, the data is stored for

several clock cycles before it is rewritten. For

this reason it is useful to be able to control

WHEN the data will be entered into a register.

• Use a control signal called Load or Enable. This

allows loading into a register known as a parallel-

load register.

Library ieee;

USE ieee.std_logic_1164.all;

ENTITY load_enable IS

 GENERIC (N : INTEGER := 4);

 PORT (D : IN STD_LOGIC_VECTOR (N-1 DOWNTO 0);

 Clock, Resetn, load : IN STD_LOGIC;

 Q : BUFFER STD_LOGIC_VECTOR (N-1 DOWNTO 0));

END load_enable;

ARCHITECTURE rtl OF load_enable IS

 SIGNAL state : std_logic_vector(N-1 DOWNTO 0);

BEGIN

 PROCESS (Resetn, Clock) IS

 BEGIN

 IF Resetn = '0' THEN

 state <= (OTHERS => '0');

 ELSIF (Clock'EVENT AND Clock = '1') THEN

 IF load = '1' THEN

 state <= D;

 ELSE

 state <= state;

 END IF;

 END IF;

 END PROCESS;

 Q <= state;

END rtl;

25

26

14

Serial-in/Parallel-out Shift Register

Parallel Load Shift Register

27

28

15

ARCHITECTURE cnt OF upcount IS

SIGNAL count : STD_LOGIC_VECTOR (N-1 DOWNTO 0);

BEGIN

PROCESS (Resetn, Clock)

BEGIN

 IF Resetn = '0' THEN

 count <= (OTHERS => ‘0’);

 -- Use of others in aggregate makes your code generic.

 -- Thus you won't have to replace all "00000000" with

 -- "00" when you change your mind and vectors should

 -- be only 2 bits wide.

 ELSIF (Clock'EVENT AND Clock = '1') THEN

 IF Enable = '1' THEN

 count <= count +1;

 ELSE

 count <= count;

 END IF;

 END IF;

END PROCESS;

Q <= count;

END cnt;

Library ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY upcount IS

 GENERIC (N : INTEGER := 4);

 PORT (Clock, Resetn, Enable : IN STD_LOGIC;

 Q: BUFFER STD_LOGIC_VECTOR (N-1 DOWNTO 0));

END upcount;

VHDL for Up-Counter

▪ Internal logic

• Incrementer: Q+0 or Q+1

▪ Contraction of a ripple carry

adder with one operant fixed at

000X

▪ Symbol for synchronous counter:

Synchronous Counters

Incrementer

C1

C2

C3

Symbol

CTR 4

EN

Q
1

Q
2

Q
3

CO

Q
0

29

30

16

▪ Contraction of carry-lookahead adder
• Reduce path delays

• Called parallel gating

• Lookahead can be used on COs
and ENs to prevent long paths in
large counters

Synchronous Counters (Contd.)

Logic Diagram-Parallel Gating

EN

Q 0

Q 1

C1

Q 2

C2

C3

CO

Q 3

▪ Add path for input data D

• enabled for Load = 1

▪ Add logic to:

• When Load = 1 disable count logic

 (feedback from outputs)

• When Load = 0 and Count = 1

 enable count logic

D0 D

C

Q0

D1 D

C

Q1

D2 D

C

Q2

D3 D

C

Q3

Load

Count

Clock

Carry
Output CO

Counter with Parallel Load

Load Count Action

0 0 Hold Stored Value

0 1 Count Up Stored Value

1 X Load D

CTR4

Load

Count

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CO

31

32

17

BCD Counter

architecture Behavioral of bcd_counter is

 signal regcnt : std_logic_vector(3 downto 0);

begin

 count: process (reset, clk) is

 begin

 if (reset='1') then

 regcnt <= "0000";

 elsif (clk'event and clk='1') then

 regcnt <= regcnt+1;

 if (regcnt = "1001") then

 regcnt <= "0000";

 end if;

 end if;

 end process;

end Behavioral;

Overview

▪ Combinational circuits

• Multiplexer, decoders, encoders, adders,

comparators

▪ Sequential circuits

• Regular sequential circuits

• Finite State Machines (FSMs)

33

34

18

FSM types

• MEALY machine:

• Outputs are dependent

on current state and

inputs

Logic

Memory

State Next State

Inputs Outputs

Logic

Memory
Logic

State Next

State

Inputs

Outputs

• MOORE machine:

• Outputs are dependent

on current state only

Example 1

▪ Input: x(t)

▪ Output: y(t)

▪ State: (A(t), B(t))

▪ Output Function?

• y(t) = x(t)(B(t) + A(t))

▪ Next State Function?

• A(t+1) = A(t)x(t) + B(t)x(t)

• B(t+1) = A(t)x(t)

C

D Q

Q

C

D Q

Q'

y

x
A

A

B

CP

Next State

Output

35

36

19

Example 1 (Contd.)

y(t) = x(t)(B(t) + A(t))
A(t+1) = A(t)x(t) + B(t)x(t)

B(t+1) = A(t)x(t)

0

0

0

0

1

1

1

0

▪ Where in time are inputs, outputs and states defined?

Typical Design Procedure for Sequential Circuits

▪ Formulation: Construct a state table or state diagram

▪ State Assignment: Assign binary codes to the states

▪ Flip-Flop Input Equation Determination: Select flip-flop
types, derive flip-flop input equations from next state
entries in the table

▪ Output Equation Determination: Derive output equations
from output entries in the table

▪ Optimization - Optimize the equations

▪ Technology Mapping - Find circuit from equations and
map to flip-flops and gate technology

▪ Verification - Verify correctness of final design

37

38

20

Example 2: Sequence Recognizer

▪ A sequence recognizer: produces an output ‘1’
whenever a prescribed pattern of inputs occur in
sequence

▪ Steps:

• Begin in an initial state (typically “reset” state), when NONE of the
initial portion of the sequence has occurred

• Add states

▪ That recognize each successive symbol occurring

▪ The final state represents the input sequence occurrence

• Add state transition arcs which specify what happens when a
symbol not in the proper sequence has occurred

• Add other arcs on non-sequence inputs which transition to states

▪ The last step is required because the circuit must recognize the input
sequence regardless of where it occurs within the overall sequence
applied since “reset”

Example 2: Recognize 1101 as Mealy machine

▪ Define states for the sequence to be recognized

▪ Starting in the initial state ("A"):

▪ Finally, output 1 on the arc from D means the sequence has
been recognized,

• To what state should the arc from state D go? Remember: 1101101 ?

• The final 1 in the recognized sequence 1101 is a sub-sequence of
1101. It follows a 0 which is not a sub-sequence of 1101. Thus it
should represent the same state reached from the initial state after a
first 1 is observed.

A B
1/0

C
1/0 1/1

D
0/0

1/1

DA B1/0
C

1/0 0/0

39

40

21

Example 2: Recognize 1101 (Contd.)

▪ The other arcs are added to each state for inputs not yet listed.
Which arcs are missing?

• State transition arcs must represent the fact that an input subsequence
has occurred.

• Note that the 1 arc from state C back to C implies that State C means two
or more 1's have occurred.

C

1/1

A B
1/0 1/0

D
0/0

0/0

0/0 1/0

0/0

State
Present Next State

x=0 x=1
Output

x=0 x=1
A A B 0 0
B A C 0 0

C D C 0 0

D A B 0 1

▪ For Moore Model, outputs
are associated with states.
Arcs now show only state
transitions

▪ Add a new state E to
produce the output 1
• State E produces the same

behavior in the future as state
B, but it gives a different output
at the present time. Thus these
states do represent a different

abstraction of the input history.
▪ The Moore model for a

sequence recognizer usually
has more states than the
Mealy model.

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Example 2: Recognize 1101 as Moore machine

41

42

22

Example 2: Moore Model (Contd.)

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

Present

State

Next State

x=0 x=1

Output

y

A A B 0

B A C 0

C D C 0

D A E 0

E A C 1

VHDL code using 3 processes: sequential recognizer

library ieee;

use ieee.std_logic_1164.all;

entity seq_rec_MEALY is

 port (CLK, RESET, X: in std_logic;

 Z: out std_logic);

end seq_rec;

architecture process_3 of seq_rec_MEALY is

 type state_type is (A, B, C, D);

 signal state, next_state: state_type;

begin

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

43

44

23

-- process 1: implements positive edge-triggered

-- flipflop with asynchronous reset

state_register: process (CLK, RESET)

begin

 if (RESET = '1') then

 state <= A;

 elsif (CLK'event and CLK = '1') then

 state <= next_state;

 end if;

end process;

-- process 2: implement output as function

-- of input X and state

output_function: process (X, state)

begin

 case state is

 when A => Z <= '0';

 when B => Z <= '0';

 when C => Z <= '0';

 when D => if X = '1' then Z <= ‘1';

 else Z <= ‘0';

 end if;

 end case;

end process;

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

-- process 3: next state-function implemented

-- as a function of input X and state

next_state_function: process (X, state)

begin

 case state is

 when A =>

 if X = '1' then next_state <= B;

 else next_state <= A;

 end if;

 when B =>

 if X = '1' then next_state <= C;

 else next_state <= A;

 end if;

 when C =>

 if X = '1' then next_state <= C;

 else next_state <= D;

 end if;

 when D =>

 if X = '1' then next_state <= B;

 else next_state <= A;

 end if;

 end case;

end process;

end architecture;

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

45

46

24

Summary

▪ Combinational circuits and regular sequential

circuits are somewhat easier to describe in

VHDL.

▪ Manual design of Finite State Machines

becomes difficult for complex circuits.

Automated tools come in handy in this case.

Appendix A: VHDL Delay Models

• Delay is created by scheduling a signal

assignment for a future time

• Delay in a VHDL cycle can be of several

types:
• Inertial

• Transport

• Delta

47

48

25

Inertial Delay

• Default delay type

• Allows for user specified delay

• Absorbs pulses of shorter duration than the specified delay

Transport Delay

• Must be explicitly specified by user

• Allows for user specified delay

• Passes all input transitions with delay

49

50

26

Delta Delay

▪ Delta delay needed to provide support for

concurrent operations with zero delay
• The order of execution for components with zero delay is not

clear

▪ Scheduling of zero delay devices requires the

delta delay
• A delta delay is necessary if no other delay is specified

• A delta delay does not advance simulator time or real/wall

clock time

• One delta delay is an infinitesimal amount of time

• The delta is a scheduling device to ensure repeatability (or

determinism)

Example – Delta Delay

51

52

	Slide 1
	Slide 2: Overview
	Slide 3: A VHDL Template for Combinational Logic
	Slide 4: 2-to-1 Multiplexer
	Slide 5: 4-to-1 Multiplexer
	Slide 6: 2-to-4 Decoder
	Slide 7: 4-bit Number Comparator: Unsigned
	Slide 8: 4-bit Number Comparator: Signed
	Slide 9: Tri-state Buffer
	Slide 10: Priority Encoder
	Slide 11: Most often implied structure
	Slide 12: Most often implied structure
	Slide 13: Overview
	Slide 14: Sequential Circuits
	Slide 15: Sequential circuits – general description
	Slide 16: Latches
	Slide 17: Edge-Triggered D Flip-Flop
	Slide 18: Modelling of Flip-Flops
	Slide 19: Direct Inputs
	Slide 20: Positive Edge-triggered D Flip-flop with Asynchronous Set/Reset
	Slide 21: Registers
	Slide 22: Simple Registers
	Slide 23
	Slide 24
	Slide 25: Parallel Load Registers
	Slide 26
	Slide 27: Serial-in/Parallel-out Shift Register
	Slide 28: Parallel Load Shift Register
	Slide 29: VHDL for Up-Counter
	Slide 30: Synchronous Counters
	Slide 31: Synchronous Counters (Contd.)
	Slide 32: Counter with Parallel Load
	Slide 33: BCD Counter
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Summary
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

