
1

EECE-4740 Advanced VHDL and FPGA Design

Lecture 1

Field Programmable Gate Arrays (FPGAs)

Cristinel Ababei

Dept. of Electrical and Computer Engr.

Marquette University

Overview

▪ FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

▪ FPGA Design Flow

• Synthesis

• Place

• Route

1

2

2

Traditional CMOS Circuits
(think of application specific integrated circuits, ASICs)

Once fabricated

cannot be changed!
3

Once fabricated:

• Does not implement a specific

circuit functionality!

• Can be (re)programmed or

configured to implement any

desired circuit!

Regularity = predictability

Field Programmable Gate Array (FPGA)

4

3

4

3

ASIC vs. FPGA

• designs must be sent

 for expensive and time

 consuming fabrication

 in semiconductor foundry

• bought off the shelf

 and reconfigured by

 designers themselves

ASIC

Application Specific

Integrated Circuit

FPGA

Field Programmable

Gate Array

• designed all the way

 from behavioral description

 to physical layout

• no physical layout design;

 design ends with

 a bitstream used

 to configure a device

Which way to go?

Off-the-shelf

Low development cost

Short time to market

Reconfigurability

High performance

ASICs FPGAs

Low power

Low cost in

high volumes

5

6

4

• Custom ICs are very expensive to develop, and delay introduction of

product to market (time to market) because of increased design time.

• Note: need to worry about two kinds of costs:

• 1. cost of development, called non-recurring engineering (NRE)

• 2. cost of manufacture

• A tradeoff usually exists between NRE cost and manufacturing costs

total
costs

number of units manufactured (volume)

NRE

A

B

Why FPGAs?

ASICs

FPGAs

Applications of FPGAs

▪ Implementation of random logic
• easier changes at system-level (one device is modified)

• can eliminate need for full-custom chips

▪ Prototyping
• ensemble of gate arrays used to emulate a circuit to be

manufactured

• get more/better/faster debugging done than possible with
simulation

▪ Reconfigurable hardware
• one hardware block used to implement more than one function

• functions must be mutually-exclusive in time

• can greatly reduce cost while enhancing flexibility

▪ Special-purpose computation engines
• hardware dedicated to solving one problem (or class of problems)

• accelerators attached to general-purpose computers

7

8

5

Applications of FPGAs

• Early on, used to serve as “glue logic” and for prototyping.
Now? Everywhere!
– Communications, software-defined radio, digital signal processing,

ASIC prototyping, computer hardware emulation, medical
imaging, computer vision, automotive, speech recognition,
cryptography, bioinformatics, financial, bitcoin, …

– https://www.intel.com/content/www/us/en/industries/overview.
html

– https://www.xilinx.com/applications.html

– https://www.xilinx.com/about/customer-innovation/aerospace-
and-defense/mars-exploration-rovers.html

– HW accelerators in datacenter servers (Intel purchased Altera for
$16 billion, AMD purchased Xilinx for $35 billion).

9

Major FPGA Vendors

SRAM-based FPGAs

▪ Altera Corp. ($16B Intel 2015)

▪ Xilinx Inc. ($30B AMD 2020)

▪ Atmel ($3.6B Microchip 2016)

▪ Lattice Semiconductor

Flash & antifuse FPGAs

▪ Actel Corp.

▪ Quick Logic Corp.

Share about 90% of the

market

9

10

https://www.intel.com/content/www/us/en/industries/overview.html
https://www.intel.com/content/www/us/en/industries/overview.html
https://www.xilinx.com/applications.html
https://www.xilinx.com/about/customer-innovation/aerospace-and-defense/mars-exploration-rovers.html
https://www.xilinx.com/about/customer-innovation/aerospace-and-defense/mars-exploration-rovers.html

6

Xilinx FPGA Families

▪ Old families

• XC3000, XC4000, XC5200

• Old 0.5µm, 0.35µm and 0.25µm technology. Not recommended for modern
designs.

▪ High-performance families

• Virtex (220 nm)

• Virtex-E, Virtex-EM (180 nm)

• Virtex-II, Virtex-II PRO (130 nm)

• Virtex-4 (90 nm)

• Virtex-5 (65 nm)

• Virtex-6

▪ Low Cost Family

• Spartan/XL – derived from XC4000

• Spartan-II – derived from Virtex

• Spartan-IIE – derived from Virtex-E

• Spartan-3 (90 nm)

• Spartan-3E (90 nm) – logic optimized

• Spartan-3A (90 nm) – I/O optimized

• Spartan-3AN (90 nm) – non-volatile

• Spartan-3A DSP (90 nm) – DSP optimized

• Spartan-6

Zynq-7000

▪ Based on the Xilinx All programmable SoC architecture; 28nm

technology node

▪ ARM dual-core Cortex-A9 MPCore processors

▪ Fixed processing system that can operate independently from the

programmable logic

▪ Processor boots on reset like any processor-based device or ASSP

▪ Processor acts as “system master” and controls the configuration of

the programmable logic enabling full or partial reconfiguration of the

programmable logic during operation

▪ Standard development flows providing a familiar programming

environment for software developers

▪ Additional documentation and resources:

• http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

11

12

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

7

Intel Altera FPGA Families

• High & Medium Density FPGAs

▪ Stratix II, Stratix, APEX II, APEX

20K, & FLEX® 10K

• Low-Cost FPGAs

▪ Cyclone & ACEX® 1K

• FPGAs with Clock Data Recovery

▪ Stratix GX & Mercury

• CPLDs

▪ MAX® 7000 & MAX 3000

• Embedded Processor Solutions

▪ Nios , Excalibur

• Configuration Devices

▪ EPC

Altera: Cyclone V

▪ Extends the Cyclone FPGA series

▪ Wide spectrum of general logic

applications

▪ Up to 300,000 logic elements (LEs)

▪ Additional documentation and resources:

• https://www.altera.com/products/fpga/cyclone-

series/cyclone-v/features.html

13

14

https://www.altera.com/products/fpga/cyclone-series/cyclone-v/features.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/features.html

8

Cyclone V Key Architectural Features

Cyclone V Devices

15

16

9

18

Logic Element (LE)

▪ The smallest unit of logic located in a LAB of all Altera
devices supported by the Quartus software.

▪ Logic element (LE) is also generally known as a logic cell.

▪ In supported device (Arria series, Cyclone series, and
Stratix series) family devices, a logic element consists of:

• a four-input LUT

• a programmable register

• a carry chain

17

18

10

Adaptive Logic Module (ALM)

▪ Basic building block of supported device (Arria
series, Cyclone V, Stratix IV, and Stratix V)
families

▪ Contains among others:
• two or four register logic cells

• two combinational logic cells

• two dedicated full adders

• a carry chain

• a register chain

▪ https://www.intel.com/content/www/us/en/docs/prog
rammable/683152/24-1/adaptive-logic-module-
alm.html

8-input Adaptive Logic Module (ALM)

19

20

https://www.intel.com/content/www/us/en/docs/programmable/683152/24-1/adaptive-logic-module-alm.html
https://www.intel.com/content/www/us/en/docs/programmable/683152/24-1/adaptive-logic-module-alm.html
https://www.intel.com/content/www/us/en/docs/programmable/683152/24-1/adaptive-logic-module-alm.html

11

DE1-SoC Board

▪ $175 USD (academic)

▪ FPGA Device

• Cyclone V SoC 5CSEMA5F31C6 Device

• Dual-core ARM Cortex-A9 (HPS)

• 85K Programmable Logic Elements

• 4,450 Kbits embedded memory

• 6 Fractional PLLs

• 2 Hard Memory Controllers

▪ Built-in USB Blaster for FPGA programming

▪ http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=2
05&No=836&PartNo=2

21

22

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=2
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=2
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=2

12

Overview

▪ FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

▪ FPGA Design Flow

• Synthesis

• Place

• Route

FPGA Architecture – General

24

23

24

13

FPGA Architecture – Detail

25

1) Configurable Logic Block (CLB)

▪ 4-input look-up table (LUT)

• Implements combinational logic functions (essentially store
truth table of the function)

• How do we implement LUT’s?

▪ Register

• Optionally stores output of LUT

4-LUT FF
1

0

latch
Logic Block set by configuration

bit-stream

4-input "look up table"

OUTPUTINPUTS

> Think of LUT as of memory

that stores truth table of any

Boolean function of 4 inputs!

> The four inputs represent the

“address” from where to read from

this memory!

26

25

26

14

How could you build a generic Boolean

logic circuit? Memories as LUTs

▪ 1-bit memory to

hold boolean

value

▪ Address is vector

of boolean input

values

▪ Contents encode

a boolean function

▪ Read out logical

value (col) for

associated row

memory

N-bit

address

word

2N words

LUT as general logic gate

▪ An n-LUT as a direct implementation

of a function truth-table.

▪ Each latch location holds the value

of the function corresponding to one

input combination.

0000 F(0,0,0,0)
0001 F(0,0,0,1)
0010 F(0,0,1,0)
0011 F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS

store in 1st latch

store in 2nd latch

Example: 4-lut

Example: 2-LUT

ORANDINPUTS

11 1 1
10 0 1
01 0 1
00 0 0

Can be used to implement any

function of 2 inputs.

How many of these are there?

How many functions of n inputs?

27

28

15

x1 x2 x3 x4

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

x1 x2 x3 x4

y

x1 x2 x3 x4

y

x1 x2

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

LUT as general logic gate

• Look-Up Tables are

primary elements for

logic

implementation

• Each LUT can

implement any

function of

4 inputs

LUTLUT

X5 X4 X3 X2 X1 Y

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 0 1 1

0 0 1 1 0 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 1 0

LUTLUT

OUT

5-Input functions implemented using two LUTs

29

30

16

multiplexer demultiplexer 4x4 switch

control control

Recall: Multiplexer/Demultiplexer

▪ Multiplexer: route one of many inputs to a single

output

▪ Demultiplexer: route single input to one of many

outputs

▪ 2:1 mux: Z = A' I0 + A I1

▪ 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3

▪ 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +

 AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

ZI0
I1
I2
I3

A B

4:1
mux

ZI0
I1

A

2:1
mux Z

Multiplexers/Selectors: to implement logic

31

32

17

CA B

0

1

2

3

4

5

6

7

1

0

1

0

0

0

1

1

S2

8:1 MUX

S1 S0

F

Multiplexers as LUTs

▪ 2n:1 multiplexer implements any function of n variables

• With the variables used as control inputs and

• Data inputs tied to 0 or 1

• In essence, a look-up table

▪ Example:

• F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC

 = A'B'(C') + A'B(C') + AB'(0) + AB(1)

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading Multiplexers

▪ Large multiplexers implemented by cascading smaller

ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

33

34

18

latch

latch

latch

latch

16 x 1

mux
16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

I0

I1

I2

I3

A B

4:1

mux
Z

▪ n-bit LUT is implemented as a 2n x 1
memory:
• Inputs choose one of 2n memory locations.

• Memory locations (latches) are normally
loaded with values from user’s configuration
bit stream.

• Inputs to mux control are the CLB inputs.

▪ Result is a general purpose “logic gate”
• n-LUT can implement any function of n

inputs!

• Example:

35

4-LUT Implementation

2) Basic I/O Block (IOB) Structure

D

EC

Q

SR

D

EC

Q

SR

D

EC

Q

SR

Three-State
Control

Output Path

Input Path

Three-State

Output

Clock

Set/Reset

Direct Input

Registered
Input

FF Enable

FF Enable

FF Enable

35

36

19

IOB Functionality

▪ IOB provides interface between the package pins

and CLBs

▪ Each IOB can work as uni- or bi-directional I/O

▪ Outputs can be forced into High Impedance

▪ Inputs and outputs can be registered

• advised for high-performance I/O

▪ Inputs can be delayed

3-a) Routing Resources: Interconnects

▪ Logic blocks embedded in a ‘sea’

of connection resources

▪ CLB = logic block

IOB = I/O buffer

PSM = programmable

 switch matrix (switch block)

▪ Interconnections critical

• Transmission gates on paths

Flexibility

Connect any LB to any other

but

Much slower than connections

within a logic block

Much slower than long lines on

an ASIC

37

38

20

3-b) Routing Resources: Switch and Connection Boxes

39

3-c) Routing Resources: Switch Blocks

Control =

Configuration

SRAM cell

Stores ‘0’ or ‘1’

40

39

40

21

Connection Blocks

Connection to Output of CLB

Connection to Input of CLB 41

Example: SRAM-type FPGA Interconnection

SB

41

42

22

Configuring an FPGA

▪ Millions of SRAM cells holding LUTs and Interconnect Routing info

▪ Volatile Memory. Loses configuration when board power is turned off

▪ Keep Bit Pattern describing the SRAM cells in non-Volatile Memory

▪ Configuration takes ~ secs

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

SRAM

JTAG Testing

JTAG Port

Programming

Bit File

Overview

▪ FPGA Devices

• ASIC vs. FPGA

• FPGA architecture

▪ FPGA Design Flow

• Synthesis

• Place

• Route

43

44

23

ASIC Digital IC Design Flow Vs.

FPGA Design Flow

Library IEEE;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity RC5_core is

 port(

 clock, reset, encr_decr: in std_logic;

 data_input: in std_logic_vector(31 downto 0);

 data_output: out std_logic_vector(31 downto 0);

 out_full: in std_logic;

 key_input: in std_logic_vector(31 downto 0);

 key_read: out std_logic;

);

end AES_core;

VHDL description (Your Source Files)

Functional simulation

Post-synthesis simulation
Synthesis

Implementation

Configuration

Timing simulation

On chip testing

45

46

24

architecture MLU_DATAFLOW of MLU is

signal A1:STD_LOGIC;

signal B1:STD_LOGIC;

signal Y1:STD_LOGIC;

signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC;

begin

 A1<=A when (NEG_A='0') else

 not A;

 B1<=B when (NEG_B='0') else

 not B;

 Y<=Y1 when (NEG_Y='0') else

 not Y1;

 MUX_0<=A1 and B1;

 MUX_1<=A1 or B1;

 MUX_2<=A1 xor B1;

 MUX_3<=A1 xnor B1;

 with (L1 & L0) select

 Y1<=MUX_0 when "00",

 MUX_1 when "01",

 MUX_2 when "10",

 MUX_3 when others;

end MLU_DATAFLOW;

VHDL description Circuit netlist

Logic Synthesis

Pin Assignment

top_level_design

CLOCK

CONTROL(0)

CONTROL(2)

CONTROL(1)

RESET

SEGMENTS(0)

SEGMENTS(1)

SEGMENTS(2)

SEGMENTS(3)

SEGMENTS(4)

SEGMENTS(5)

SEGMENTS(6)

H3

K2
G5

K3
H1
K4

G4

H5

H6

H2

P10

B10FPGA

47

48

25

Circuit Netlist

Mapping

LUT2

LUT3

LUT4

LUT5

LUT1
FF1

FF2

LUT0

49

50

26

Placement
CLB SLICES

FPGA

Example placement (VPR tool)

51

52

27

Example placement (ISE tool)

Routing

Programmable Connections

FPGA

53

54

28

Example routing (VPR tool)

Example routing (VPR tool) – zoom-in

55

56

29

Xilinx FPGA Editor

Configuration

▪ Once a design is implemented, you must create a

file that the FPGA can understand

• This file is called a bitstream: a BIT file (.bit extension)

▪ The BIT file can be downloaded directly to the

FPGA, or can be converted into a PROM file

which stores the programming information

57

58

30

Summary

▪ FPGAs are more and more prevalent!

▪ They are here to stay!

▪ They offer a flexible platform for increasingly

complex systems

▪ Design automation tools (i.e., CAD tools) take

care of the entire design process from VHDL →

configuration bitstream file

59

	Slide 1
	Slide 2: Overview
	Slide 3
	Slide 4
	Slide 5: ASIC vs. FPGA
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Altera: Cyclone V
	Slide 15
	Slide 16: Cyclone V Devices
	Slide 17
	Slide 18
	Slide 19: Adaptive Logic Module (ALM)
	Slide 20: 8-input Adaptive Logic Module (ALM)
	Slide 21
	Slide 22: DE1-SoC Board
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Summary

