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Overview

▪ FPGA Devices

• ASIC vs. FPGA

• FPGA architecture 

▪ FPGA Design Flow

• Synthesis

• Place 

• Route
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Traditional CMOS Circuits 
(think of application specific integrated circuits, ASICs)

Once fabricated 

cannot be changed!
3

Once fabricated:

• Does not implement a specific 

circuit functionality!

• Can be (re)programmed or 

configured to implement any 

desired circuit!

Regularity = predictability

Field Programmable Gate Array (FPGA)
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ASIC vs. FPGA

• designs must be sent

  for expensive and time

  consuming fabrication

  in semiconductor foundry

• bought off the shelf

  and reconfigured by

  designers themselves

ASIC

Application Specific

Integrated Circuit

FPGA

Field Programmable

Gate Array

• designed all the way

  from behavioral description

  to physical layout

• no physical layout design;

  design ends with

  a bitstream used

  to configure a device

Which way to go?

Off-the-shelf

Low development cost

Short time to market

Reconfigurability

High performance

ASICs FPGAs

Low power

Low cost in

high volumes
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• Custom ICs are very expensive to develop, and delay introduction of 

product to market (time to market) because of increased design time. 

• Note: need to worry about two kinds of costs:

• 1. cost of development, called non-recurring engineering (NRE)

• 2. cost of manufacture

• A tradeoff usually exists between NRE cost and manufacturing costs

total
costs

number of units manufactured (volume)

NRE

A

B

Why FPGAs?

ASICs

FPGAs

Applications of FPGAs

▪ Implementation of random logic
• easier changes at system-level (one device is modified)

• can eliminate need for full-custom chips

▪ Prototyping
• ensemble of gate arrays used to emulate a circuit to be 

manufactured

• get more/better/faster debugging done than possible with 
simulation

▪ Reconfigurable hardware
• one hardware block used to implement more than one function

• functions must be  mutually-exclusive in time

• can greatly reduce cost while enhancing flexibility

▪ Special-purpose computation engines
• hardware dedicated to solving one problem (or class of problems)

• accelerators attached to general-purpose computers
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Applications of FPGAs 

• Early on, used to serve as “glue logic” and for prototyping. 
Now? Everywhere!
– Communications, software-defined radio, digital signal processing, 

ASIC prototyping, computer hardware emulation, medical 
imaging, computer vision, automotive, speech recognition, 
cryptography, bioinformatics, financial, bitcoin, …

– https://www.intel.com/content/www/us/en/industries/overview.
html

– https://www.xilinx.com/applications.html

– https://www.xilinx.com/about/customer-innovation/aerospace-
and-defense/mars-exploration-rovers.html 

– HW accelerators in datacenter servers (Intel purchased Altera for 
$16 billion, AMD purchased Xilinx for $35 billion).

9

Major FPGA Vendors

SRAM-based FPGAs

▪ Altera Corp. ($16B Intel 2015)

▪ Xilinx Inc. ($30B AMD 2020)

▪ Atmel ($3.6B Microchip 2016)

▪ Lattice Semiconductor

Flash & antifuse FPGAs

▪ Actel Corp.

▪ Quick Logic Corp.

Share about 90% of the 

market
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Xilinx FPGA Families

▪ Old families

• XC3000, XC4000, XC5200

• Old 0.5µm, 0.35µm and 0.25µm technology. Not recommended for modern 
designs.

▪ High-performance families

• Virtex (220 nm)

• Virtex-E, Virtex-EM (180 nm)

• Virtex-II, Virtex-II PRO (130 nm)

• Virtex-4 (90 nm)

• Virtex-5 (65 nm)

• Virtex-6

▪ Low Cost Family

• Spartan/XL – derived from XC4000

• Spartan-II – derived from Virtex

• Spartan-IIE – derived from Virtex-E

• Spartan-3 (90 nm)

• Spartan-3E (90 nm) – logic optimized

• Spartan-3A (90 nm) – I/O optimized

• Spartan-3AN (90 nm) – non-volatile

• Spartan-3A DSP (90 nm) – DSP optimized

• Spartan-6

Zynq-7000

▪ Based on the Xilinx All programmable SoC architecture; 28nm 

technology node

▪ ARM dual-core Cortex-A9 MPCore processors

▪ Fixed processing system that can operate independently from the 

programmable logic

▪ Processor boots on reset like any processor-based device or ASSP

▪ Processor acts as “system master” and controls the configuration of 

the programmable logic enabling full or partial reconfiguration of the 

programmable logic during operation

▪ Standard development flows providing a familiar programming 

environment for software developers

▪ Additional documentation and resources:

• http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html 
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Intel Altera FPGA Families

• High & Medium Density FPGAs

▪ Stratix  II, Stratix, APEX  II, APEX 

20K, & FLEX® 10K 

• Low-Cost FPGAs

▪ Cyclone  & ACEX® 1K

• FPGAs with Clock Data Recovery

▪ Stratix GX & Mercury

• CPLDs

▪ MAX® 7000 & MAX 3000

• Embedded Processor Solutions

▪ Nios , Excalibur

• Configuration Devices

▪ EPC

Altera: Cyclone V

▪ Extends the Cyclone FPGA series

▪ Wide spectrum of general logic 

applications

▪ Up to 300,000 logic elements (LEs)

▪ Additional documentation and resources:

• https://www.altera.com/products/fpga/cyclone-

series/cyclone-v/features.html 
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Cyclone V Key Architectural Features

Cyclone V Devices
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Logic Element (LE)

▪ The smallest unit of logic located in a LAB of all Altera 
devices supported by the Quartus software. 

▪ Logic element (LE) is also generally known as a logic cell.

▪ In supported device (Arria series, Cyclone series, and 
Stratix series) family devices, a logic element consists of:

• a four-input LUT 

• a programmable register 

• a carry chain
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Adaptive Logic Module (ALM)

▪ Basic building block of supported device (Arria 
series, Cyclone V, Stratix  IV, and Stratix V) 
families

▪ Contains among others:
• two or four register logic cells

• two combinational logic cells 

• two dedicated full adders

• a carry chain

• a register chain 

▪ https://www.intel.com/content/www/us/en/docs/prog
rammable/683152/24-1/adaptive-logic-module-
alm.html 

8-input Adaptive Logic Module (ALM)
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DE1-SoC Board

▪ $175 USD (academic)

▪ FPGA Device

• Cyclone V SoC 5CSEMA5F31C6 Device

• Dual-core ARM Cortex-A9 (HPS)

• 85K Programmable Logic Elements

• 4,450 Kbits embedded memory

• 6 Fractional PLLs

• 2 Hard Memory Controllers

▪ Built-in USB Blaster for FPGA programming

▪ http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=2
05&No=836&PartNo=2 
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Overview

▪ FPGA Devices

• ASIC vs. FPGA

• FPGA architecture 

▪ FPGA Design Flow

• Synthesis

• Place 

• Route

FPGA Architecture – General

24
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FPGA Architecture – Detail  

25

1) Configurable Logic Block (CLB)

▪ 4-input look-up table (LUT)

• Implements combinational logic functions (essentially store 
truth table of the function)

• How do we implement LUT’s?

▪ Register

• Optionally stores output of LUT

4-LUT FF
1

0

latch
Logic Block set by configuration 

bit-stream

4-input "look up table"

OUTPUTINPUTS

> Think of LUT as of memory 

that stores truth table of any 

Boolean function of 4 inputs!

> The four inputs represent the 

“address” from where to read from

this memory!

26
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How could you build a generic Boolean 

logic circuit? Memories as LUTs

▪ 1-bit memory to 

hold boolean 

value

▪ Address is vector 

of boolean input 

values

▪ Contents encode 

a boolean function

▪ Read out logical 

value (col) for 

associated row

memory

N-bit

address

word

2N words

LUT as general logic gate

▪ An n-LUT as a direct implementation 

of a function truth-table.

▪ Each latch location holds the value 

of the function corresponding to one 

input combination.

0000    F(0,0,0,0)
0001    F(0,0,0,1)
0010    F(0,0,1,0)
0011    F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS

store in 1st latch

store in 2nd latch

Example: 4-lut

Example: 2-LUT

ORANDINPUTS

11     1     1
10     0     1
01     0     1
00     0     0

Can be used to implement any 

function of 2 inputs.

How many of these  are there?

How many functions of n inputs?  

27
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x1 x2 x3 x4

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

x1 x2 x3 x4

y

x1 x2 x3 x4

y

x1 x2

y

x1 x2

y

LUT

x1
x2
x3
x4

y

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

0
1
0
0
0
1
0
1
0
1
0
0
1
1
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

0

x1

0

x2 x3 x4

0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

y

1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

LUT as general logic gate

• Look-Up Tables are 

primary elements for 

logic 

implementation

• Each LUT can 

implement any 

function of 

4 inputs

LUTLUT

X5 X4 X3 X2 X1 Y

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 0 1 1

0 0 1 1 0 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 1 0 0

0 1 0 1 1 1

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 1 0

1 0 0 1 0 0

1 0 0 1 1 0

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 1 0 0

1 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 1 1

1 1 1 0 0 0

1 1 1 0 1 1

1 1 1 1 0 0

1 1 1 1 1 0

LUTLUT

OUT

5-Input functions implemented using two LUTs

29
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multiplexer demultiplexer 4x4 switch

control control

Recall: Multiplexer/Demultiplexer

▪ Multiplexer: route one of many inputs to a single 

output

▪ Demultiplexer: route single input to one of many 

outputs

▪ 2:1 mux: Z = A' I0 + A I1

▪ 4:1 mux: Z = A' B' I0 + A' B I1 + A B' I2 + A B I3

▪ 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +   

                        AB'C'I4 + AB'CI5  + ABC'I6  + ABCI7

I0
I1
I2
I3
I4
I5
I6
I7

A  B  C

8:1
mux

ZI0
I1
I2
I3

A  B

4:1
mux

ZI0
I1

A

2:1
mux Z

Multiplexers/Selectors: to implement logic

31
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CA B

0

1

2

3

4

5

6

7

1

0

1

0

0

0

1

1

S2

8:1 MUX

S1 S0

F

Multiplexers as LUTs

▪ 2n:1 multiplexer implements any function of n variables

• With the variables used as control inputs and

• Data inputs tied to 0 or 1

• In essence, a look-up table

▪ Example:

• F(A,B,C) = m0 + m2 + m6 + m7

               = A'B'C' + A'BC' + ABC' + ABC

               = A'B'(C') + A'B(C') + AB'(0) + AB(1)

control signals B and C simultaneously choose 
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A  B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading Multiplexers

▪ Large multiplexers implemented by cascading smaller 

ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B  C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

33
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latch

latch

latch

latch

16 x 1

mux
16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

I0

I1

I2

I3

A  B

4:1

mux
Z

▪ n-bit LUT is implemented as a 2n x 1 
memory:
• Inputs choose one of 2n memory locations.

• Memory locations (latches) are normally 
loaded with values from user’s configuration 
bit stream.

• Inputs to mux control are the CLB inputs.

▪ Result is a general purpose “logic gate”  
• n-LUT can implement any function of n 

inputs!

• Example:

35

4-LUT Implementation

2) Basic I/O Block (IOB) Structure

D

EC

Q

SR

D

EC

Q

SR

D

EC

Q

SR

Three-State
Control

Output Path

Input Path

Three-State

Output

Clock

Set/Reset

Direct Input

Registered 
Input

FF Enable

FF Enable

FF Enable

35
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IOB Functionality

▪ IOB provides interface between the package pins 

and CLBs

▪ Each IOB can work as uni- or bi-directional I/O

▪ Outputs can be forced into High Impedance

▪ Inputs and outputs can be registered

• advised for high-performance I/O

▪ Inputs can be delayed

3-a) Routing Resources: Interconnects

▪ Logic blocks embedded in a ‘sea’ 

of connection resources

▪ CLB = logic block

IOB = I/O buffer

PSM = programmable

            switch matrix (switch block)

▪ Interconnections critical

• Transmission gates on paths

Flexibility

Connect any LB to any other

but

Much slower than connections 

within a logic block

Much slower than long lines on 

an ASIC

37
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3-b) Routing Resources: Switch and Connection Boxes

39

3-c) Routing Resources: Switch Blocks

Control = 

Configuration 

SRAM cell 

Stores ‘0’ or ‘1’

40
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Connection Blocks

Connection to Output of CLB

Connection to Input of CLB 41

Example: SRAM-type FPGA Interconnection

SB

41
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Configuring an FPGA

▪ Millions of SRAM cells holding LUTs and Interconnect Routing info

▪ Volatile Memory. Loses configuration when board power is turned off

▪ Keep Bit Pattern describing the SRAM cells in non-Volatile Memory

▪ Configuration takes ~ secs

Configuration data in

Configuration data out

= I/O pin/pad

= SRAM cell

SRAM

JTAG Testing

JTAG Port

Programming

Bit File

Overview

▪ FPGA Devices

• ASIC vs. FPGA

• FPGA architecture 

▪ FPGA Design Flow

• Synthesis

• Place 

• Route
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ASIC Digital IC Design Flow Vs.

FPGA Design Flow

Library IEEE;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity RC5_core is

           port(

                 clock, reset, encr_decr: in std_logic;

                 data_input: in std_logic_vector(31 downto 0);

                 data_output: out std_logic_vector(31 downto 0);

                 out_full: in std_logic;

                 key_input: in std_logic_vector(31 downto 0);

                 key_read: out std_logic;

          );

end AES_core;

VHDL description (Your Source Files)

Functional simulation

Post-synthesis simulation
Synthesis

Implementation

Configuration

Timing simulation

On chip testing

45
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architecture MLU_DATAFLOW of MLU is  

 

signal A1:STD_LOGIC;

signal B1:STD_LOGIC;

signal Y1:STD_LOGIC;

signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC;

begin

 A1<=A when (NEG_A='0') else

  not A;

 B1<=B when (NEG_B='0') else

  not B;

 Y<=Y1 when (NEG_Y='0') else

  not Y1;

  

 MUX_0<=A1 and B1;

 MUX_1<=A1 or B1;

 MUX_2<=A1 xor B1;

 MUX_3<=A1 xnor B1;

 

 with (L1 & L0) select

  Y1<=MUX_0 when "00",

   MUX_1 when "01",

   MUX_2 when "10",

   MUX_3 when others;

 

end MLU_DATAFLOW;

VHDL description Circuit netlist

Logic Synthesis

Pin Assignment

top_level_design

CLOCK

CONTROL(0)

CONTROL(2)

CONTROL(1)

RESET

SEGMENTS(0)

SEGMENTS(1)

SEGMENTS(2)

SEGMENTS(3)

SEGMENTS(4)

SEGMENTS(5)

SEGMENTS(6)

H3

K2
G5

K3
H1
K4

G4

H5

H6

H2

P10

B10FPGA

47
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Circuit Netlist

Mapping

LUT2

LUT3

LUT4

LUT5

LUT1
FF1

FF2

LUT0

49
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Placement
CLB SLICES

FPGA

Example placement (VPR tool)

51
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Example placement (ISE tool)

Routing

Programmable Connections

FPGA

53
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Example routing (VPR tool)

Example routing (VPR tool) – zoom-in

55
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Xilinx FPGA Editor

Configuration

▪ Once a design is implemented, you must create a 

file that the FPGA can understand

• This file is called a bitstream: a BIT file (.bit extension)

▪ The BIT file can be downloaded directly to the 

FPGA, or can be converted into a PROM file 

which stores the programming information

57
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Summary

▪ FPGAs are more and more prevalent!

▪ They are here to stay!

▪ They offer a flexible platform for increasingly 

complex systems

▪ Design automation tools (i.e., CAD tools) take 

care of the entire design process from VHDL → 

configuration bitstream file

59
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