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The performance of deep neural networks is highly sensitive to the choice of the hyperparameters that define

the structure of the network and the learning process. When facing a new application, tuning a deep neural

network is a tedious and time-consuming process that is often described as a “dark art.” This explains the

necessity of automating the calibration of these hyperparameters. Derivative-free optimization is a field that

develops methods designed to optimize time-consuming functions without relying on derivatives. This work

introduces the HyperNOMAD package, an extension of the NOMAD software that applies the MADS algo-

rithm [7] to simultaneously tune the hyperparameters responsible for both the architecture and the learning

process of a deep neural network (DNN). This generic approach allows for an important flexibility in the

exploration of the search space by taking advantage of categorical variables. HyperNOMAD is tested on the

MNIST, Fashion-MNIST, and CIFAR-10 datasets and achieves results comparable to the current state of the art.
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1 INTRODUCTION

Neural networks are mathematical structures used to solve supervised or unsupervised problems
involving images, sounds, and speech, to name a few. In recent years, neural networks gained
in popularity due to the emergence of large-size databases and the development of the computa-
tional power of contemporary machines, through the use of GPUs in particular. These favorable
conditions have allowed neural networks to learn complex structures and achieve a level of preci-
sion that can surpass human performance across multiple instances such as robotics [41], medical
diagnostics [43], and more.
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However, the performance of a neural network is strongly linked to its structure and to the
values of the parameters of the optimization algorithm used to minimize the error between the
predictions of the network and the data during its training. The choices of the neural network
hyperparameters can greatly affect its ability to learn from the training data and to generalize
with new data. The algorithmic hyperparameters of the optimizer must be chosen a priori and
cannot be modified during optimization. Hence, to obtain a neural network, it is necessary to fix
several hyperparameters of various types: real, integer, and categorical. A variable is categorical
when it describes a class, or category, without a relation of order between these categories. The
search for an optimal configuration is a very slow process that, along with the training, takes up
the majority of the time when developing a network for a new application. It is a relatively new
problem that is often solved randomly or empirically.

Derivative-free optimization (DFO) [8, 21] is the field that aims to solve optimization prob-
lems where derivatives are unavailable, although they might exist. This is the case, for example,
when the objective and/or constraint functions are non-differentiable, noisy, or expensive to eval-
uate. In addition, the evaluation in some points may fail, especially if the values of the objec-
tive and/or constraints are the outputs of a simulation or an experience. Blackbox optimization

(BBO) is a subfield of DFO where the derivatives do not exist and the problem is modeled as
a blackbox. This term refers to the fact that the computing process behind the output values is
unknown. The general DFO problem is described as

min
x ∈Ω

f (x ),

where f is the objective function to minimize over the domain Ω.
There are two main classes of DFO methods: model-based and direct search methods. The first

uses the value of the objective and/or the constraints at some already evaluated points to build a
model able to guide the optimization by relying on the predictions of the model. For example, this
class includes methods based on trust regions [21, Chapter 10] or interpolation models [52]. This
differentiates them from direct search methods [31] that adopt a more straightforward strategy to
optimize the blackbox. At each iteration, direct search methods generate a set of trial points that
are compared to the “best solution” available. For example, the GPS algorithm [59] defines a mesh
on the search space and determines the next point to evaluate by choosing a search direction. DFO
algorithms usually include a proof of convergence that ensures a good-quality solution under cer-
tain hypotheses on the objective function. BBO algorithms extend beyond this scope by including
heuristics such as evolutionary algorithms, sampling methods, and so on.

In [5, 10], the authors explain how a hyperparameter optimization (HPO) problem can be
seen as a blackbox optimization problem. Indeed, the HPO problem is equivalent to a blackbox
that takes the hyperparameters of a given algorithm and returns some measure of performance
defined in advance such as the time to solution, the value of the best point found, or the number
of solved problems. In the case of neural networks, the blackbox can return the accuracy on the
test dataset as a measure of performance. With this formulation, DFO techniques can be applied
to solve the original HPO problem.

This work presents HyperNOMAD, a package that applies MADS, a direct search method behind
the NOMAD software, to tune the hyperparameters that affect the architecture and the learning
process of a deep neural network. Figure 1 illustrates the workflow when solving HPO problems
with HyperNOMAD. For a given set of hyperparameters, the construction of the network, the
network training, validation, and testing are all wrapped as a single blackbox evaluation. One
specificity of HyperNOMAD is its ability to explore a large search space by exploiting categorical
variables with the implementation of a neighborhood structure specifically designed for the HPO
problem considered here.
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Fig. 1. The HyperNOMAD workflow.

The article is structured as follows. Section 2 presents and discusses some of the main ap-
proaches used to solve the HPO problem of neural networks. In Section 3, the experimental setup
is explicitly defined, and the instances used to test the proposed approach are presented. Section 4
introduces the HyperNOMAD package and gives an overview of MADS, the algorithm selected
to carry out the optimization task including the handling of categorical variables. Computational
results are provided and discussed in Section 5. Finally, Appendix A describes the basic usage of
HyperNOMAD.

2 LITERATURE REVIEW

Tuning the hyperparameters of a deep neural network is a critical and time-consuming process that
was mainly done manually relying on the knowledge of the experts. However, the rising popularity
of deep neural networks and their usage for diverse applications called for the automation of this
process in order to adapt to each problem.

The hyperparameters that define a deep neural network can be separated into two categories: the
ones that define the architecture of the network and the ones that affect the optimization process of
the training phase. Tuning the hyperparameters of the first category alone has led to a separate field
of research called Neural Architecture Search (NAS) [25] that allowed achievement of state-of-
the-art performance [53, 65] on some benchmark problems, although at a massive computational
cost of 800 GPUs for a few weeks. Typically, one would perform an NAS first and then start tuning
the other hyperparameters with the optimized architecture. However, Zela et al. [64] argue that
this separation is not optimal since the two aspects are not entirely independent from one another.
Therefore, the proposed research considers both aspects at once.

One of the first scientific approaches used to tackle the HPO problem of neural networks is
grid search. This method consists of discretizing the hypercube defined by the range of each
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hyperparameter and then evaluating each point on the grid. This technique is still used today
and is implemented in several HPO libraries such as scikit-learn and Spearmint [50, 56]. It has
the advantage of being easy to understand, implement, and parallelize. However, it becomes very
expensive when training large networks, which is the case of deep neural networks, or when one
seeks to optimize several hyperparameters at once. In addition, grid search does not detect the
impact of each hyperparameter on the overall performance of the network.

To avoid the drawbacks of the grid search, an alternative is to use random search [16]. Indeed,
a random exploration of the space allows one to evaluate more different values for each of the hy-
perparameters. This has the advantage of increasing the chances of finding a better configuration
but also to highlight the importance of some hyperparameters compared to the others. In addition,
the random search makes it possible to highlight these properties with fewer evaluations than an
exhaustive grid search. More recently, the Hyperband algorithm [42] was introduced, which is a
variant of a random search that uses an early stopping criterion to detect a non-promising point
early on in order to save computational resources and time, thus achieving an important speedup
compared to other methods. However, despite its advantages over grid search, a random approach
is limited because it is not adaptive and it does not exploit the performance scores of each config-
uration to direct the search. This can also waste resources that could have been better exploited
by another optimization approach.

Genetic algorithms are evolutionary heuristics that are also used for the HPO problem. Inspired
by biology, a genetic algorithm generates an initial population, i.e., a set of configurations. Then, it
combines the best parents to create a new generation of children. It also introduces random muta-
tions to ensure a certain diversity in the population. These heuristics are therefore adaptive, thus
exploring the space more wisely even if some randomness remains in the process. These algorithms
are often used to optimize hyperparameters [26, 57, 63]. In [45], a method based on particle swarm
optimization is able to provide networks with higher performance than those defined by experts
in less time than what would have required a grid search or a completely random search. Another
approach using the evolutionary algorithm CMA-ES [46] was proposed with satisfactory results.

Other approaches based on machine learning can be found in the literature. For example, the
HPO problem can be seen as reinforcement learning [12, 65, 66] where the main difference between
each method relies on how the agents are defined and dealt with. In [55], a neural network is
able to design other neural networks by learning to explore the possible configurations. There,
the HPO of neural networks is seen as a multi-objective problem where one seeks to improve
the performance of the network while minimizing the computing power required. This approach,
although successful, solves a different problem from the one considered in the context of this
study. Also, [18] uses a network of long-term memory neurons to learn the parameters of another
multi-layer network that is tested on a binary classification problem.

DFO is naturally adapted to the HPO problem since it aims at solving problems typically given
in the form of blackboxes that can be computationally costly to evaluate, with non-existent or
unexploitable derivatives. In [10], the authors propose a general way of modeling hyperparameter
optimization problems as a blackbox optimization problem. This formulation is used in [44] to
optimize 11 hyperparameters (3 real and 8 integer) of the BARON solver. This study compared
the solutions found by 27 DFO algorithms on a total of 126 problems. The results show that the
DFO methods have reduced the average solution time, sometimes by more than 50%. Another
formulation inspired by robust optimization is used in [51], in addition to that of [10], to optimize
the hyperparameters of the BFO algorithm [51]. BBO methods are also at the heart of Google Vizier
[29], which is a tool that can be used for the HPO problem of machine learning algorithms, and
especially for deep neural networks.
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Table 1. Selection of Open Source Libraries for the Hyperparameter Optimization Problem

Optimization Method Type of Variables

Grid Random Bayesian Model- Direct-

Package Search Search Optimization Based DFO Search DFO Real Int. Cat.

scikit-learn [50] � � - - - � � �
hyperopt [17] - � � - - � � �
Spearmint [56] � � � - - � � �
SMAC [32] - - - � - � � �
MOE [62] - - � - - � - -

RBFOpt [23] - - - � - � � -

DeepHyper [13] - � - � - � � �
Oríon [20] - � � - - � � �
Google Vizier [29] � � � � - � � �
HyperNOMAD - - - - � � � �

Bayesian optimization (BO) can be seen as a subclass of DFO methods and, as such, can
be used to solve the HPO problem. The BO methods use information collected during previous
assessments to diagnose the search space and predict which areas to explore first. Among them,
Gaussian processes (GPs) are models that seek to explain the collected observations that sup-
posedly come from a stochastic function. GPs are a generalization of multi-variate Gaussian distri-
butions, defined by a mean and a covariance function. GPs are popular models for optimizing the
hyperparameters of neural networks [56, 60]. However, the disadvantage of GPs is that they do not
fit well to categorical features, and their performance depends on the choice of the kernel function
that defines them. Tree-structured Parzen Estimator (TPE) is also a Bayesian method that can
be used as a model instead of a GP. After a certain number of evaluations, this method separates
the evaluated points into two sections: a portion (<25%) of the points with the best performances
and the remaining. This method seeks to find a distribution of the best observations to determine
the next candidates. TPEs are also used for the HPO of neural networks [15], even if it has the
disadvantage of ignoring the interactions between the hyperparameters.

Other model-based DFO methods were also applied to the HPO problem. In [23], the authors
applied radial basis functions to model the blackbox as previously defined. This article presents
the results obtained on the MNIST dataset [40], then on a problem of interactions between drugs.
These tests show that this model provides comparable or better results than popular configura-
tions. In [28], a trust-region DFO algorithm is applied to optimize the hyperparameters of an SVM
model. Here again, this approach obtained a more efficient model than those defined by the experts
or by a Bayesian algorithm.

The positive results of these methods suggest that the DFO approach is well suited to solve the
HPO problem of deep neural networks. This motivated the idea of using the MADS algorithm [7],
which is implemented in the NOMAD package [37], especially since it can handle integer and cat-
egorical variables [2, 9]. Using the MADS algorithm for hyperparameter tuning has been validated
in [47], where an SVM model is calibrated using MADS combined with the Nelder-Mead and VNS
search strategies [4, 11].

A non-exhaustive list of open source libraries for HPO is given in Table 1 along with the opti-
mization algorithms implemented in each library and the types of variables handled.

3 EXPERIMENTAL SETUP

This section first defines the generic blackbox approach used for modeling the HPO problem. This
is done by listing the different hyperparameters considered to construct, train, and validate a deep
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Fig. 2. Example of a convolutional neural network. Image taken from [22].

Fig. 3. Illustration of a convolution operation in (a) and a pooling operation in (b). Images taken from [49].

neural network (DNN) in order to obtain its test accuracy. The second part of the section gives
an overview of the datasets provided with HyperNOMAD.

3.1 Hyperparameters of the Framework

A variety of hyperparameters must be chosen to tune a DNN for a given application. These hy-
perparameters affect different aspects of the network: the architecture, the optimization process,
and the handling of the data. The following section lists the hyperparameters considered in this
study along with their respective types and scopes.

3.1.1 The Network Architecture. A convolutional neural network (CNN) is a deep neural
network consisting of a succession of convolutional layers followed by fully connected layers as
illustrated in Figure 2.

To define a new CNN, one must first decide on the number of convolutional layers. These layers
can be seen as matrices in a two-dimensional convolution. The size of the first convolutional layer
is determined by the size of the images the network is fed. The size of the remaining layers is com-
puted by taking into account the different operations applied from layer to layer. These operations
can be divided into two categories: a convolution or a pooling. Figure 3(a) represents the steps of
a convolution operation. The initial image is a 5×5 matrix whose borders are padded with pixels
of zeros. A padding is an artificial border filled with zeros that is added to a convolutional matrix.
It serves to increase the size of the output of the convolution or to give more weights to the val-
ues of the original border on the output. The convolution consists of choosing a kernel, or filter,
that is passed over the image in order to compute the coefficients of the feature map. The kernel

can be seen as a small matrix hovered over the image to extract important features that form the
feature map where each coefficient is equal to the sum of the products between the coefficients of
the image and the ones of the kernel situated in the same position. For example, in Figure 3(a), the
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Fig. 4. Examples of activation functions.

coefficient (2,1) of the feature map is obtained by the following operation: (0 × 0) + (0 × 0) +
(0 × 1) + (0 × 0) + (21 × 1) + (0 × 0) + (85 × 1) + (71 × 0) + (0 × 0) = 106. In general, a convolu-
tion can be determined with few factors such as the number of feature maps—or output channels—
generated; the size of the kernel, i.e., the size of the kernel matrix, which in turn will affect the size
of the feature map; the stride, which corresponds to the step by which the kernel is moved over
the image; and the previously defined padding. In Figure 3(a), the image is padded with one layer
of zeros.

When the feature map is obtained, one can decide to apply a pooling operation, which can be
seen as a special kernel that keeps the biggest value in each zone of the image. Figure 3(b) illustrates
a 2×2 pooling that results in an output of half the size of the feature map. After each convolutional
layer, a pooling operation can be applied with the pooling size ranging from 1 (no pooling) to 5.

Each fully connected layer that follows a convolutional layer is determined by the number of
neurons it contains. The neurons of a layer are connected to all of the ones in the next layer
through weighted arcs. Let x1,x2, . . . ,xnl

be the values of the neurons of the layer l and aj be
the value of the neuron j in the layer l + 1; then aj = ϕ (

∑sl

i=1wi jxi ), where w1j ,w2j , . . . ,wnl j are
the weights of the arcs from the neurons of the layer l to the jth neuron of the following layer
and ϕ is an activation function used to introduce a non-linearity in the outputs. Figure 4 presents
some examples of activation functions. Additionally, the neurons of the fully connected layers are
attributed a dropout rate, which is the probability that a neuron is deactivated from the layer. The
dropout rate acts as a regularization technique that counters the tendency to overfit to the training
data and therefore allows the network to better generalize. For the sake of reducing the dimension
of the HPO problem, a single dropout rate is applied to all layers.

Table 2 summarizes the hyperparameters responsible for defining the structure of the network.
Hyperparameters 2 to 6 must be defined for each convolutional layer and hyperparameter 8 must
also be defined for each fully connected layer. Therefore, if n1 is the number of convolutional lay-
ers and n2 the number of fully connected layers, the total number of hyperparameters responsible
for defining the structure of the neural network is 5n1 + n2 + 4. Since this number, and therefore
the dimension of the problem, can change, the number of convolutional layers n1 and fully con-
nected layers n2 are treated as categorical variables instead of integers. NOMAD can generically
handle all types of categorical variables that can affect both the variable type and the problem
dimension during an optimization but requires that the user implement the logic of these changes.
HyperNOMAD exploits the implementation structure of NOMAD but automates and simplifies
this task when handling hyperparameters of a neural network. Further explanations are presented
in Section 4.

3.1.2 The Optimizer. For a given network architecture, the training phase is conducted to mini-
mize the error between the predictions of the network and the correct values of the labels assigned
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Table 2. Hyperparameters That Define the Architecture of a Neural Network

# Hyperparameter Type Scope

1 Number of convolutional layers (n1) Categorical {0, 1, . . . , 20}
2 Number of output channels Integer {0, 1, . . . , 50}
3 Kernel size Integer {0, 1, . . . , 10}
4 Stride Integer {1, 2, 3}
5 Padding Integer {0, 1, 2}
6 Pooling size Integer {1, 2, . . . , 5}
7 Number of full layers (n2) Categorical {0, 1, . . . , 30}
8 Size of the full layer Integer {0, 1, . . . , 500}
9 Dropout rate Real [0; 1]

10 Activation function Categorical/Integer

{
ReLU (1), Sigmoid (2),

Tanh (3)
}

to the validation data. Let Θ be a multi-dimensional matrix that stores the weights of the arcs that
link each layer l of the network with the next layer l + 1, and let

J (Θ) = Err (pred, truth) + λ | |Θ| |2 (1)

be the loss function where the second term corresponds to a regularization based on the weight

decay λ ∈ [0; 1]. This aims at reducing the over-fitting during the training. The optimizer must then
solve minΘ J (Θ). Before starting the training phase, the optimizer that carries out this task must
be selected along with its specific algorithmic hyperparameters. A stochastic gradient approach
is more suitable in this case because of the high dimension of the matrix Θ, which is usually in
the millions. At each iteration, the weights of the network are updated by following a stochastic
direction with a particular step size, which is called a learning rate in the machine learning context.
Similarly to any gradient descent method, the learning rate must be chosen and updated to avoid
oscillations or divergence. Substantial research and tricks of the trade are developed to solve this
problem [14, 19, 39].

In its original version, the stochastic gradient descent (SGD) has one fixed learning rate dur-
ing the training for all the weights. This issue can somewhat be handled through a scheduler in
PyTorch where the user decides to change the learning rate after a certain number of epochs. In
HyperNOMAD, the learning rate is updated by the scheduler tool in PyTorch using a cosine an-
nealing strategy. SGD also suffers from oscillating “descent” directions, which tends to slow down
the convergence in the training. This problem can be corrected by adding momentum and damp-
ening when producing a new descent direction, which are used as the coefficients in a weighted
sum between the last direction taken and the stochastic gradient computed in the current iteration.
With the right coefficients, this sum ensures fewer oscillations and a quicker convergence.

Other optimizers have been developed mainly to add an adaptive learning rate that is adjusted to
each weight since they are not all equally important regarding the final prediction of the network.
The Adagrad optimizer [24], based on SGD, adjusts the learning rate to each weight based on the
matrixGk defined at the iteration k as the sum of the outer products of the gradients computed at

each iteration until k , Gk =
∑k

i=1 ∇J (Θi ) (∇J (Θi ))�. The diagonal of this matrix accumulates the
gradients of each weight so that the step size update is inversely proportionate to the accumu-
lated gradient for a specific weight. PyTorch also allows for decaying the initial learning rate by
multiplying it by the learning rate decay coefficient τ .
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Table 3. Choices of the Optimizer and the Corresponding Hyperparameters

Optimizer Update Rule Hyperparameter Type Scope

SGD dk+1 = μdk + (1 − δ )∇J (Θk+1) η: Initial learning rate Real [0; 1]

Θk+1 = Θk − ηdk+1 μ: Momentum Real [0; 1]

δ : Dampening Real [0; 1]

λ: Weight decay (1) Real [0; 1]

Adagrad Gk+1 = Gk + ∇J (Θk+1) (∇J (Θk+1))� η: Initial learning rate Real [0; 1]

Θk+1 = Θk − τ
η√

ϵ I+diaд (Gk+1 )
∇J (Θk ) τ : Learning rate decay Real [0; 1]

ϵ : Smoothing constant Real [0; 1]

λ: Weight decay (1) Real [0; 1]

RMSProp dk+1 = μdk + (1 − μ )∇J (Θk+1) η: Initial learning rate Real [0; 1]

Gk+1 = γGk + (1 − γ )∇J (Θk+1) (∇J (Θk+1))� μ: Momentum Real [0; 1]

Θk+1 = Θk −
η√

ϵ I+diaд (Gk+1 )
dk+1 γ : Forgetting factor Real [0; 1]

λ: Weight decay (1) Real [0; 1]

Adam dk+1 = β1dk + (1 − β1)∇J (Θk ) η: Initial learning rate Real [0; 1]

Gk+1 = β2Gk + (1 − β2)∇J (Θk+1) (∇J (Θk+1))� β1: Factor on the running
average of the gradient

Real [0; 1]

d̂k+1 =
dk

1−β1
; Ĝk+1 =

Gk

1−β2
β2: Factor on the running
average of the squares of
the gradient

Real [0; 1]

Θk+1 = Θk −
η√

ϵ I+diaд (Ĝk+1 )
d̂k+1

λ: Weight decay (1) Real [0; 1]

The adaptive rule of Adagrad reduces the learning rate of the frequently updated weights rather
aggressively. RMSProp [58] corrects this issue by dividing the learning rate by a running average of
the squares of the gradient Gk+1 = γGk + (1 − γ )∇J (Θk+1) (∇J (Θk+1))�, where γ is the forgetting

factor, also referred to as the smoothing constant in PyTorch. The Adam optimizer [34] expands
RMSProp further by taking two factors into account. The first one, β1, is on the running average
on the gradient and the second, β2 is on the running average on the squares of the gradient as
shown in Table 3.

Table 3 presents the list of selectable optimizers considered in the blackbox along with their
corresponding hyperparameters. There is one categorical hyperparameter that determines which
optimizer is chosen, plus four real hyperparameters related to each. Therefore, the training regime
is defined with five hyperparameters in total.

3.1.3 The Training Phase. Before training a network, the data must be separated into three
groups; each one is responsible for the training, the validation, and the testing of the network.
During the training phase, the network is fed with the training data, performs a forward pass,
computes the prediction error, and does a back-propagation in order to update the weights using
the optimizer. The way the network is fed is also of great importance. One can choose to input
the training data one by one, all at once, or by sending subsets or mini-batches of the data. The
batch size is an integer hyperparameter that varies in {1, 2, . . . ,ntrain}, where ntrain is the size of
the training data.

When the network has been fed all of the training data, it is said to have performed an epoch.
Usually, the training data has to be passed more than once in order to obtain good weights
and a good testing accuracy. Therefore, the number of epochs must be chosen as well. This
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Table 4. Datasets Embedded in HyperNOMAD

Dataset Training Data Validation Data Testing Data Number of Classes

MNIST 40,000 10,000 10,000 10
Fashion-MNIST 40,000 10,000 10,000 10
EMNIST 40,000 10,000 10,000 10
KMNIST 40,000 10,000 10,000 10
CIFAR-10 40,000 10,000 10,000 10
CIFAR-100 40,000 10,000 10,000 100
STL-10 4,000 1,000 8,000 10

hyperparameter is dealt with as follows. The validation accuracy is evaluated after each epoch
and the weights of the network responsible for the best validation accuracy are stored. This pro-
cess is repeated as long as the number of epochs is lower than a certain maximum number of
epochs and as long as an early stopping condition has not been satisfied. These early stopping cri-
teria depend on the evolution of the training and validation of the network. When the validation
accuracy stagnates or when it stays lower than 20% after 50 epochs, the training can be interrupted
in order to save time and computational resources. Once the training is done, the test accuracy is
evaluated using the weights that gave the best validation accuracy.

Finally, the blackbox optimization problem is obtained following the model in [10], where the
blackbox takes the hyperparameters as inputs and builds the network in order to train, validate,
and test it on a given dataset before returning the test error as a measure of performance. In
this context, the blackbox takes 5n1 + n2 + 10 mixed variable inputs, where n1 is the number of
convolutional layers and n2 the number of fully connected layers of the network, and returns the
value of the accuracy on the test dataset. This blackbox problem is solved using the NOMAD
software [37] described in Section 4.1.

3.2 Datasets

The HyperNOMAD package comes with a selection of datasets all meant for classification prob-
lems. Table 4 lists the datasets embedded so far through PyTorch [48], an open source library used
to model and manipulate deep neural networks. HyperNOMAD also allows the usage of a personal
dataset; see the online documentation at https://github.com/bbopt/HyperNOMAD. When loading
a dataset from Table 4, HyperNOMAD applies a normalization and a random horizontal flip to
regulate and augment the data.

The rest of the section describes the datasets used for benchmarking HyperNOMAD. First, a
validation is done using both MNIST [40] and Fashion-MNIST [61], and once positive results are
obtained, the second and more complex dataset, CIFAR-10 [36], is considered.

3.2.1 MNIST. MNIST [40] is a dataset containing 60,000 images of hand-written digits that is
usually divided into three categories: 40,000 for training, 10,000 for validation, and the remaining
10,000 for testing. The set is used for developing a convolutional neural network capable of recog-
nizing the digits in each image and assigning it to the correct class. The relative simplicity of this
task does not require complex neural networks to obtain a good accuracy. Therefore, this dataset
is usually considered as a first validation of a concept and not a sufficient proof of the quality of a
method among the machine learning community.

3.2.2 Fashion-MNIST. Fashion-MNIST [61] is a dataset containing 60,000 images of clothing
items that belong in 10 different categories. The split into training, validation, and test sets is
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similar to MNIST, meaning that 40,000 images are allocating for training, 10,000 for validation,
and 10,000 for testing.

3.2.3 CIFAR-10. The second set of tests are performed with CIFAR-10 [36]. This dataset con-
tains 60,000 colored images of objects that belong to 10 different and independent categories. The
data is once again divided into three sets: 40,000 for training, 10,000 for validation, and 10,000 for
testing.

For these tests, the blackbox within HyperNOMAD is used to construct the convolutional neu-
ral network corresponding to the values of the hyperparameters described in Section 3.1. This
network is trained, validated, and tested for each dataset according to the mode of operation of
HyperNOMAD detailed in Section 4.

4 HYPERNOMAD

The HyperNOMAD package is available on GitHub.1 It contains a series of Python modules that act
as a blackbox, which takes a set of hyperparameters described in Section 3 as inputs and constructs
the corresponding network that is trained and tested before returning the test accuracy as the
output. This blackbox uses the PyTorch package [48] for its simplicity. HyperNOMAD also contains
an interface that runs the optimization of the blackbox using the NOMAD software [37] described
in the rest of this section. The basic usage of HyperNOMAD is described in Appendix A.

4.1 Overview of NOMAD

The NOMAD software [37] is a C++ implementation of the MADS algorithm [7, 9], which is a direct

search method that generates, at each iteration k , a set of points on the meshMk = {x + diag(δk )z :
x ∈ V k , z ∈ Zn }, where V k contains the points that were previously evaluated (including the cur-

rent iterate xk ) and δk ∈ Rn is the mesh size vector.
Each iteration of MADS is divided into two steps: the search and the poll. The search phase

is optional and can contain different strategies to explore a wider space in order to generate a
finite number of possible mesh candidates. This step can be based on surrogate functions, Latin
hypercube sampling, and so forth [4, 11]. The poll, on the other hand, is strictly defined since the
convergence theory of MADS relies entirely on this phase. In the poll step, the algorithm generates
directions around the current iterate xk to search for candidates locally in a region centered around

xk and of radius, in each dimension, of Δk ∈ Rn , which is called the poll size vector. The set of
candidates in this step defines the poll set Pk .

If MADS finds a better point than the incumbent, then the iteration is declared a success, and the
mesh and poll sizes are increased. However, if the iteration fails, then both parameters are reduced

so thatδk ≤ Δk is maintained. This relation ensures that the set of search directions becomes dense
in the unit sphere asymptotically. In addition, NOMAD can handle categorical variables by adding
a step in the basic MADS algorithm. A variable is categorical when it can take a finite number of
nominal or numerical values that express a qualitative property that assign the variable to a class
(or category). The algorithm relies on an ad hoc neighborhood structure, provided in practice by
the user as a list of neighbors for any given point. The poll step of MADS is augmented with the so-
called extended poll that links the current iterate xk with the independent search spaces where the
neighbors can be found. The first neighbor that improves the objective function is chosen and the
optimization carries on in the corresponding search space. For more detail on how MADS handles
categorical variables, the reader is referred to the following list of articles [1–3, 6, 35]. The MADS
algorithm is summarized in Algorithm 1.

1https://github.com/bbopt/HyperNOMAD.
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Fig. 5. Example of a convolution block (top) composed of a header (green) containing the categorical variable
that describes the number of convolutional layers, followed by two groups of variables, each one describing
one convolutional layer. Its first neighbor is obtained by adding a convolutional layer at the right (bottom
left) and the second neighbor is obtained by deleting the rightmost convolutional layer (bottom right).

ALGORITHM 1: Mesh adaptive direct search (MADS).

k = 0,δ0, x0

[1] Search (optional)

Construct a set of mesh points and evaluate them
If there is a success, go to [4]

[2] Poll

Evaluate the points in the poll set Pk

If there is a success, go to [4]

[3] Extended poll

Build and evaluate the neighbors of the current incumbent defined specifically for an
application

If there is no success, perform an extended poll descent for each neighbor close enough to
success
[4] Updates

Update δk ,xk ,Mk ,V k depending on the success of the previous phases
If no stopping condition is satisfied: k ← k + 1 and go to [1]

4.2 Hyperparameters in HyperNOMAD

The selected neighborhood structure in HyperNOMAD relies on blocks of categorical variables
with their associated variables. The following subsections describe this structure.

4.2.1 Blocks of Hyperparameters. HyperNOMAD splits the hyperparameters (HPs) defined
in Section 3.1 into different blocks: one for the convolution layers, the fully connected layers, and
the optimizer and one for each of the other HPs. A block is an implemented structure that stores a
list of values, each one starting with a header and followed by the associated variables, when appli-
cable, that are gathered into groups. For example, consider a CNN with two convolutional layers,
each one defined with the number of output channels, the kernel size, the stride, the padding, and
whether a pooling is applied or not as stated in Table 2. Then consider the values (16, 5, 1, 1, 0) and
(7, 3, 1, 1, 1). Each set of values corresponds to a group of variables that describes one convolutional
layer and both groups are part of the convolution block. The header of the convolution block is the
categorical variable that represents the number of convolutional layers (n1) that the CNN contains
as shown in Figure 5 (top). The convolution block is followed by the fully connected block. The
header of this block also corresponds to the categorical variable that describes the number of fully
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Fig. 6. Example of a fully connected block (top) composed of a header (green) containing the categorical
variable that describes the number of fully connected layers, followed by three groups of variables, each one
describing the size of one fully connected layer. Its first neighbor is obtained by adding a fully connected
layer at the left (bottom left) and the second neighbor is obtained by deleting the leftmost fully connected
layer (bottom right).

Fig. 7. Example of an optimizer block and its neighbor (top) obtained by selecting the next optimizer by
following the order defined in the bottom and initializing the associated variables to their default values.

Fig. 8. Illustration of how HyperNOMAD changes the categorical variable corresponding to the activation
function.

connected layers. Here, each layer is defined with the number of neurons it contains. Therefore, if
n2 is the value in the header, then there are n2 groups of a single variable as illustrated in Figure 6
(top). The optimizer block always possesses a fixed size since there is always five HPs that de-
scribe the optimizer: The choice of the algorithm and four related HPs as summarized in Table 3.
The header of this block is the categorical variable corresponding to the choice of the optimizer
and the four associated variables are gathered into one group as shown in Figure 7. The other HPs
are put as the headers of their individual block with no associated variables.

4.2.2 Neighborhood Structure. The extended poll of MADS with categorical variables con-
structs one or more neighbor points from any given point and evaluates them. There are up to
three categorical variables that are exploited using an ad hoc generation of neighbor points. A
neighborhood structure considering coupled effect between the categorical variables may find
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promising search spaces, but it certainly increases the resources needed to carry out the optimiza-
tion. To limit the number of neighbor points, the neighborhood structure considered here changes
one block of variables per neighbor while the other blocks are fixed at the current iterate val-
ues. Therefore, neighbors of the convolutional, fully connected optimizer and activation function
blocks must first be defined. The neighbor structure of the convolution block is obtained by adding
and subtracting a group of associated variables at the end of the block. These operations can only
be performed if the resulting size is within the bounds for the variable n1. When adding a group
of associated variables, the values of the associated variables are copied from the rightmost group.
Adding or subtracting a group to the convolution block is illustrated in Figure 5.

The neighbor structure of the fully connected block is obtained by adding and subtracting
one associated variable at the beginning of the block. These operations can only be performed if
the resulting size is within the bounds for the variable n2. When adding a group, the value of the
associated variable is copied and inserted from the leftmost value (see example in Figure 6). The
structure of the network varies when adding or subtracting a convolutional or a full layer, and so
does the dimension of the HPO problem. Varying the remaining categorical variables has no such
effect.

The categorical variable controlling the choice of optimizer has four possible values: SGD, Adam,
Adagrad, or RMSprop. The choice of optimizer does not change the dimension of the optimization
problem, but it affects the interpretation of the four associated variables related to the optimizer
as illustrated in Table 3. A single neighbor point is obtained by cycling through optimizers as
shown in Figure 7. For each possible optimizer, there are four associated variables controlling the
algorithm with different interpretations. When the optimizer is changed, these variables are reset
to their default values. Figure 7 also illustrates the neighbor of a specific optimizer block.

In some cases, a variable controlling a category can be well handled as an integer variable by
ordering the categories with a predefined order. This is the case for the variable selecting among the
three possible activation functions (see Section 3.1 and Table 2): ReLU, Sigmoid, and Tanh, with
corresponding values between 1 and 3. In HyperNOMAD, this variable is treated as a periodic
integer—without bounds—instead of a categorical one since the choice of the activation function
does not affect the structure of the problem as for the number of convolutional or fully connected
layers, nor does it affect the role of other variables as the choice of the optimizer. The choice of
the activation function is therefore considered a periodic integer; thus, no explicit neighborhood
structure is required.

With the neighborhood structure defined for each of the previous blocks, and knowing that each
neighbor of any given point is built so that only one block is changed at a time while the remaining
blocks keep the same values as the current iterate, it follows that each point has five neighbors:
two obtained from the convolutional block, two from the fully connected block, and one from the
optimizer block.

5 COMPUTATIONAL RESULTS

This section summarizes the results obtained by HyperNOMAD and compares them to other meth-
ods when applied to the MNIST [40], Fashion-MNIST [61], and CIFAR-10 [36] datasets. For each
series of tests, all the hyperparameters discussed in Section 3 are allowed to vary. However, the
user of the framework can fix some hyperparameters and choose to focus on others as described
in Appendix A. All the following tests give the same budget of 200 blackbox evaluations for every
optimization algorithm. Each configuration is allowed to train for a maximum of 100 epochs. The
validation error is evaluated to save the best weights that are re-loaded to the network at the end
of the training to evaluate the test error. The following tests were run using various Nvidia GPUs
(GTX 1070, TITAN Xp, and Tesla P100).
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Table 5. Hyperparameters Considered for the Tests on the MNIST Dataset
with the Simplified Caffe Blackbox

# Hyperparameter Type Scope

1 Number of convolutional layers Categorical {0, 1, 2}
2 Number of output channels Integer {1, 2, . . . , 50}
3 Number of full layers Categorical {0, 1, 2}
4 Size of the full layer Integer {1, 2, . . . , 50}
5 Learning rate Real [0; 1]
6 Momentum Real [0; 1]
7 Weight decay Real [0; 1]
8 Learning decay Real [0; 1]

Table 6. Results on MNIST with the Simplified Caffe Blackbox

Algorithm Average Accuracy on the Validation Set Average Accuracy on the Test Set
RS 94.02 89.07
SMAC 95.48 97.54
RBFOpt 95.66 97.93
NOMAD 96.81 97.98

Every section compares HyperNOMAD with random search (RS) and a Bayesian method. The
hyperopt library [17] is the one used in this comparison since it contains RS in addition to TPE,
a Bayesian method that relies on Parzen trees [15]. Note that no comparison with the neural ar-
chitecture search methods in the AutoML toolbox [27] is included in this study as they operate on
a different premise than the one considered here. AutoML exploits previous knowledge on a spe-
cific set of applications by building CNNs as a combination of well-defined cells of convolutional
networks that were found at an unclear cost. HyperNOMAD, however, starts purposefully with-
out any prior knowledge on the dataset and designs a network from scratch. While this approach
can be disadvantageous on some well-studied datasets, it allows HyperNOMAD to stay generic
enough to be applicable on any new task. The performances of AutoML are therefore outside the
scope of this work and no comparison is carried out between HyperNOMAD and AutoML.

5.1 MNIST

The first tests are performed on the same blackbox provided by the authors of [23], which consid-
ers the MNIST dataset with the Caffe library [33]. The NOMAD software is directly used instead
of HyperNOMAD, in order to compare the different methods of Table 6. The blackbox takes a
simplified set of hyperparameters as described in Table 5, constructs a convolutional neural net-
work that is trained on the MNIST dataset [40], and finally returns the validation accuracy as a
performance measure.

The results are obtained by choosing five random seeds and executing the optimization five
times for each seed. Table 6 presents the results obtained by RS, RBFOpt, and SMAC, which are
taken from [23], and NOMAD. These results show that using NOMAD surpasses all of the other
methods in terms of both validation and test accuracy.

Then, HyperNOMAD is tested with PyTorch and its embedded MNIST dataset. The blackbox
used for this comparison is the one embedded in HyperNOMAD, which allows for greater flex-
ibility than the previous Caffe blackbox since it takes into account all of the hyperparameters
described in Section 3.1.
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Fig. 9. Comparison between HyperNOMAD, TPE, and RS when launched from the default starting point of
HyperNOMAD on the MNIST dataset by representing the successes of each algorithm when a budget of 200
blackbox evaluations is given starting from the default configuration of HyperNOMAD.

The optimization is initialized from the same point corresponding to the default values for the
hyperparameters in HyperNOMAD. This initial point has one convolutional layer and two fully
connected layers, thus amounting to 17 hyperparameters. The networks are then allowed a budget
of 200 epochs. When evaluated, the default configuration obtains a test accuracy of 97.6%. Figure 9
shows the evolution of HyperNOMAD versus the RS and the TPE, both taken from the hyperopt
library. After 200 blackbox evaluations, HyperNOMAD finds the best configuration with a final
test accuracy of 99.53%. The best solution found by TPE obtains a test accuracy of 99.47% and RS
fails to improve on the initial point. Figure 9 shows the evolution of the validation accuracy of the
top configuration found by each optimization algorithm.

5.2 Fashion-MNIST

For this dataset, HyperNOMAD is again compared against TPE and RS with a budget of 200 black-
box evaluations, meaning that 200 different configurations can be tested.

The first comparison starts from the default initial point of HyperNOMAD, which corresponds
to 17 hyperparameters and obtains a test accuracy of 87.28% on Fashion-MNIST. The two categor-
ical variables defining the number of convolutional and fully connected layers can change their
values during the same optimization, meaning that the total number of hyperparameters to opti-
mize is dynamic. In this setting, RS does not improve on the initial configuration, TPE obtains one
that scores 89.28% and HyperNOMAD ends with 92.05%, as is shown in Figure 10(a).

These results can be explained by the fact that both RS and TPE tend to sample a significant
amount of infeasible configurations. A configuration is infeasible when the dimension of the inputs
becomes null as it passes through the convolutional layers or when the kernel size is bigger than
the image on which it is applied. This situation indicates the presence of hidden constraints [38]
that the NOMAD software is able to handle well, contrary to both RS and TPE, which use most
of their blackbox evaluation budget on infeasible solutions and are not able to significantly im-
prove on the initial point. HyperNOMAD is more conservative and modifies few values from one
configuration to another, which partially explains its ability to surpass the two competitors in this
setting. Figure 11 illustrates this behavior by showcasing the number of layers in the configura-
tions evaluated by each optimization algorithm.

To decrease the chances of sampling an infeasible configuration, a second setting is tested where
the number of convolutional layers is fixed to 1 and the number of fully connected layers is fixed
to 2 during the entire optimization process, which means that all 200 configurations have one
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Fig. 10. Comparison between HyperNOMAD, TPE, and RS on the Fashion-MNIST dataset by representing
the successes of each algorithm when a budget of 200 blackbox evaluations is given starting from the default
configuration of HyperNOMAD.

Fig. 11. Number of layers in the configurations sampled by each algorithm during the HPO process on the
Fashion-MNIST dataset, with a budget of 200 blackbox evaluations.

convolutional layer and two fully connected ones. Figure 10(b) illustrates the evolution of each
optimization method: RS now improves on the initial point by finding a solution with a validation
score of 92.77%, HyperNOMAD ends up with a RS score of 92.83%, and TPE finds the best solution
with a score of 92.95%.

5.3 CIFAR-10

Similarly to the previous tests, HyperNOMAD is compared to TPE and RS. These tests are ini-
tialized with different points, the first being the default values of the hyperparameters in Hyper-
NOMAD with 17 hyperparameters and the second being a network with the VGG-13 architecture.
The VGG networks [54] are very deep convolutional neural networks with small kernels. Figure 12
illustrates the architecture of the VGG-16 network.

Figure 13 compares HyperNOMAD, TPE, and RS starting from the default settings of Hyper-
NOMAD, which achieves a test accuracy of 48%. This optimization does not fix any variable, espe-
cially the number of convolutional and fully connected layers. RS could not improve on the initial
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Fig. 12. Architecture of the VGG-16 network. Image taken from [30].

Fig. 13. Comparison between HyperNOMAD, TPE, and RS on the CIFAR-10 dataset by representing the
successes of each algorithm when a budget of 200 blackbox evaluations is given starting from the default
configuration of HyperNOMAD.

point and neither did TPE. HyperNOMAD finds a solution that achieves 77.94%. Once again, RS
and TPE spend their blackbox evaluation budget sampling infeasible configurations. Then, a sec-
ond run is executed with the number of convolutional and fully connected layers fixed to their
initial values of 1 and 2, respectively. Since the starting point is the same as in the previous test,
the initial test score is 48% and this time HyperNOMAD improves the least with a final score of
76.57%, RS achieves 79.85%, and TPE finds the best solution with 80.13%. These results on CIFAR-
10 highlight the similar behavior with Fashion-MNIST, where both RS and TPE struggle when the
dimension of the optimization problem is dynamic but become competitive with HyperNOMAD
when the number of layers is fixed.

Figure 14(a) shows the results of a second test performed using an initial point with a VGG
architecture with 13 convolutional layers and no fully connected one, which corresponds to
75 hyperparameters, that achieves a test accuracy of 82.57%. The best configuration found by
HyperNOMAD achieves a final test accuracy of 92.05%, whereas TPE and RS do not improve on the
given initial point for different reasons. RS only samples infeasible architectures, which is expected
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Fig. 14. Comparison between HyperNOMAD, TPE, and RS on the CIFAR-10 dataset by representing the
successes of each algorithm when a budget of 200 blackbox evaluations is given starting from a VGG-like
configuration.

when considering the high dimension of the optimization problem that increases the chances of
sampling infeasible configurations. TPE, on the other hand, manages to sample feasible networks
but with scores lower than the initial point. This behavior is illustrated in Figure 14(b), where every
feasible score obtained by each HPO method is recorded. The best point found by HyperNOMAD
is then fully retrained, this time with a budget of 1,000 epochs, and the final test accuracy increases
to 93.11%.

6 DISCUSSION

This work introduces HyperNOMAD, a generic framework package for hyperparameter optimiza-
tion of DNNs using the NOMAD software [37]. The key aspect of this framework is its ability to op-
timize both the architecture and the optimization phase of a deep neural network simultaneously,
and to explore different search spaces during a single execution by taking advantage of categori-
cal variables. The framework obtains good results for the MNIST, Fashion-MNIST, and CIFAR-10
datasets and finds better solutions than TPE and RS. Future work aims at considering a differ-
ent search space, especially concerning the architecture of the network; considering techniques of
data augmentation as additional hyperparameters of the blackbox; adding more flexibility in the
way the learning rate is updated; and expanding the framework to other types of problems than
classification and providing interfaces compatible with other tools such as Tensorflow or Caffe2.

APPENDICES

A USING HYPERNOMAD

HyperNOMAD is a C++ and Python package dedicated to the hyperparameter optimization of
deep neural networks. The package contains a blackbox specifically designed for this problem and
provides a link with the NOMAD software [37] used for the optimization. The blackbox takes
as inputs the hyperparameters discussed in Section 3.1 and builds a corresponding deep neural
network in order to train, validate, and test it on a specific dataset before returning the test accuracy
as a measure of performance. NOMAD is then used to minimize this error. The following appendix
provides an overview of how to use the HyperNOMAD package.
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Prerequisites

HyperNOMAD relies on:

• A compiled version of the NOMAD software available at https://www.gerad.ca/nomad/ for
the optimization

• The PyTorch library available at https://pytorch.org/ for modeling the neural network
within the blackbox

• A version of Python superior to 3.6
• A version of gcc superior to 3.8

Additionally, HyperNOMAD has the following Python requirements:

• Numpy
• Matplotlib

Installation of HyperNOMAD

HyperNOMAD is available at https://github.com/bbopt/HyperNOMAD. The user must produce
the executable hypernomad.exe using the provided makefile as follows:

When the compilation is successful, a message appears asking to set the HYPERNOMAD_HOME
environment variable, which can be done by adding a line in the .profile or .bashrc files:

The user can check that the installation is successful by trying to run the command:

Using HyperNOMAD

The next phase is to create a parameter file that contains the necessary information to specify
the classification problem, the search space, and the initial starting point. HyperNOMAD allows
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for a good flexibility of tuning a convolutional network by considering multiple aspects of a
network at once such as the architecture, the dropout rate, the choice of the optimizer and the
hyperparameters related to the optimization aspect (learning rate, weight decay, momentum,
etc.), the batch size, and so forth. The user can choose to optimize all these aspects or select
a few and fix the others to certain values. The user can also change the default range of each
hyperparameter. This information is passed through the parameter file by using a specific syntax
where “LB” represents the lower bound and “UB” the upper bound.

While the hyperparameters have default values in HyperNOMAD, the dataset must be explicitly
provided by the user in a separate file in order to specify the considered optimization problem.
The following section explains how to specify the necessary parameter file before running an
optimization.

Choosing a dataset. The library can be used on different datasets whether they are already in-
corporated in HyperNOMAD, such as the ones listed in Table 4, or are provided by the user. In
the latter case, please refer to the user guide at https://hypernomad.readthedocs.io/en/latest/ for
details on how to link a personal dataset to the library. The rest of the section describes how to
run an optimization on a dataset provided with HyperNOMAD.

Because of the nature of the applications considered by HyperNOMAD, the computing time
can become constraining, especially during the training phase of each configuration, which is why
“TOYMNIST” is created as a subset of MNIST containing 300 training images, 100 for the validation,
and another 100 for testing. It is added to the package for experimenting with HyperNOMAD
without having to wait several hours for each blackbox evaluation.

Specifying the search space. In order to specify the problem to optimize and its parameters, the
user must provide a parameter file that contains all the necessary information to run an optimiza-
tion. As shown below, the parameter file consists of a list of keywords, each corresponding to a
hyperparameter, and the values that the user wishes to attribute them. Some of these key words
are mandatory such as the dataset, in order to specify the problem, and the number of blackbox
evaluations. Other keywords are optional and have default values if they do not appear on the
parameter file. Table 7 summarizes all the possible keywords with their default values and ranges.
The user can change the lower and upper bounds of a hyperparameter and decide to maintain a
hyperparameter at a fixed value during the entire optimization.

Below is a first example of a parameter file that corresponds to the one provided in
$HYPERNOMAD_HOME/examples/mnist_first_example.txt. First, the MNIST dataset is chosen
and HyperNOMAD is allowed to try a maximum of 100 configurations. Then, the number of
convolutional layers is fixed throughout the optimization to five. The two “-” appearing after
the “5” mean that the default lower and upper bounds are maintained. The kernels, number of
fully connected layers, and activation function are respectively initialized to 3, 6, and 2 (Sig-
moid), respectively, and the dropout rate is initialized to 0.6 with a new lower bound of 0.3
and upper bound of 0.8 instead of the default range of [0; 1]. Finally, all the remaining hyper-
parameters from Table 7 that are not explicitly mentioned in this file are fixed to their default
values.
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Table 7. Keywords for the HyperNOMAD Parameters File

Name Description Default Value Scope

DATASET
Name of the dataset used for the

optimization
No default

A dataset from
Table 4 or

CUSTOM for a
custom dataset

NUMBER_OF_CLASSES
Number of classes of the

classification problem

No default. Use
only if DATASET
= CUSTOM

{1, 2, . . . ,∞}

MAX_BB_EVAL
Maximum number of calls to

the blackbox
No default {1, 2, . . . ,∞}

NUM_CON_LAYERS Number of convolutional layers 2 {0, 1, . . . , 100}

OUTPUT_CHANNELS
Number of output channels for

each convolutional layer
6 {1, 2, . . . , 100}

KERNELS
Size of the kernel applied to

each convolutional layer
5 {1, 2, . . . , 20}

STRIDES
Step of the kernel for each

convolutional layer
1 {1, 2, 3}

PADDINGS
Size of the padding for each

convolutional layer
0 {0, 1, 2}

POOLING_SIZE
Size of pooling after each

convolutional layer
1 {1, 2, 3, 4, 5}

NUM_FC_LAYERS
Number of fully connected

layers
2 {0, 1, . . . , 500}

SIZE_FC_LAYER
Size of each fully connected

layer
128 {1, 2, . . . , 1000}

BATCH_SIZE
Size of batch for the mini-batch

gradient
128 {1, 2, . . . , 400}

OPTIMIZER_CHOICE Optimizer to use from Table 3 3 {1, 2, 3, 4}
OPT_PARAM_1 Learning rate 0.1 [0; 1]

OPT_PARAM_2
Second hyperparameter related

to the optimizer
0.9 [0; 1]

OPT_PARAM_3
Third hyperparameter related to

the optimizer
0.005 [0; 1]

OPT_PARAM_4
Fourth hyperparameter related

to the optimizer
0 [0; 1]

DROPOUT_RATE
Probability that a node will be

dropped out
0.5 [0;0.95]

ACTIVATION_FUNCTION
Choice of the activation

function from ReLU (1), Sigmoid
(2), and Tanh (2)

1 {1, 2, 3}

REMAINING_HPS
Allows to fix or to vary all the

hyperparameters not explicitly
mentioned in the parameter file

VAR {FIXED, VAR}
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Below is a second example of a parameter file where the user is only interested in optimizing the
fully connected block of a CNN on the MNIST dataset. All the remaining aspects of the network are
fixed to their default values throughout the execution of HyperNOMAD. The optimization starts
from a point with 10 fully connected layers of the same size of 500 neurons. This parameter file is
provided with the package in $HYPERNOMAD_HOME/examples/mnist_fc_optim.txt.

Finally, below is a minimal parameter file where only the mandatory information is specified.
The execution of HyperNOMAD starts from the default starting point and all the hyperparameters
of Table 7 can be changed. The last line of this file can actually be removed without changing the
behavior of HyperNOMAD since the default value for REMAINING_HPS is set to VAR. Executing Hy-
perNOMAD with this file should return the same values obtained in Figure 9. This file is provided
in $HYPERNOMAD_HOME/examples/cifar10_default.txt.
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Fig. 15. Example of a window that appears during one evaluation of the blackbox in HyperNOMAD. This
figure shows in real time the training and validation accuracies of the current evaluated set of hyperparam-
eters, at each epoch.

Running an execution. The user can run the previous example by executing the following com-
mand from the examples directory:

During the optimization, a window appears to plot the training and validation accuracies of
the network corresponding to the current point at each epoch as shown in Figure 15. When the
optimization is done, HyperNOMAD produces the two files history.txt and stats.txt. The
first one contains each evaluated point and the corresponding testing accuracy, and the second
one contains the list of successful points.
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