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Abstract—Tiny Machine Learning (TinyML) is an emerging

concept that concerns the execution of ML tasks on very con-

strained IoT devices. Although TinyML has generated a strong

R&D interest around it, various challenges limit its effective

execution in the constrained devices world, with the result of

slowing down the development of a complete ecosystem around

it. TinyML as-a-Service (TinyMLaaS) aims to fill the gap in this

respect, with the definition of a set of guidelines that can enable an

easier democratization of TinyML. In this paper, we describe how

the “as-a-Service” model is bound to TinyML, by providing an

overview of our concept and introducing the design requirements

and building blocks that can make TinyMLaaS reality.

I. INTRODUCTION

It has been predicted that there will be 26.9 billion con-
nected devices by 2026, as part of the so-called Internet of
Things (IoT) [1]. Computing and networking infrastructure
such as cloud, fog and edge computing – which are classified
depending on their resources and capabilities – together with
IoT, machine learning (ML) has become the key technology
enabler for many industries and domains such as automotive [2],
smart cities [3], health care [4], and smart factories [5].

In the context of constrained IoT, the devices have consider-
ably less capabilities than edge devices in terms of processing
power and memory. In addition, they are also limited in
their power resources as they often run using small batteries
or energy-harvesting technologies. However, a recent new
technology trend has emerged in the IoT landscape: ML in
constrained devices. Combining ML and constrained devices is
envisioned to have a great impact on the current IoT application
landscape, in areas such as e-Health, smart agriculture and
farming, production, and smart home [6] by involving tiny and
energy-efficient always-on devices [7].

The concept that allows to fit ML models into constrained
devices, without compromising their energy efficiency, is called
Tiny Machine Learning (TinyML) [7]. TinyML encompasses
very resource-constrained hardware, software, ML algorithms,
compilers, and tools to squeeze a ML model into a few kilobyte
of memory [8]. As these hardware platforms, compilers, and
software tools are often tied to a specific vendor, the lack
of interoperability among different solutions may undermine
the other benefits deriving by the use of TinyML. To cope
with this issue, we have recently proposed TinyML as-a-

Service (TinyMLaaS), a cloud- or edge- based service that
simplifies the deployment of ML models into constrained
devices and guarantees the desired interoperability [9].

Fig. 1: The overlapping of technological areas and enablers.
(This illustration is a slightly modified version of Fig. 1 in [10]).

In this paper, we extend our TinyMLaaS paradigm by
identifying the steps that are needed to make TinyMLaaS
interoperable with other peer systems, bearing in mind the
ultimate goal of building a full ecosystem around it. We also
highlight what are the key technical challenges to address
for reaching this goal, as well identifying what are the most
prominent research areas to investigate in order to bring
significant benefits to the entire TinyML ecosystem.

II. BACKGROUND

Before introducing TinyMLaaS and our vision of an ecosys-
tem around it, this section provides the fundamental notions of
TinyML and ML in constrained devices, useful to understand
the remainder of the paper.

A. What is TinyML?

We have defined TinyML in the introduction simply as the
intersection between ML and constrained IoT devices and
provide now a more technological point of view of TinyML in
the following. Fig. 1 illustrates technology areas and enablers as
circles and their common ground as intersections. For example,
the world of Embedded Linux can be considered as rendezvous
point between Linux and IoT devices, thus also acknowledging
that IoT device capabilities stretch across the edge. ML was
originally started, developed and evolved in the cloud with
resource demanding software frameworks and large hardware
resources such as graphics processing units (GPUs) and tensor
processing units (TPUs). Now the computation is moving into
the edge to run ML on less powerful computing resources but
still with ML-supporting embedded OSs. TinyML represents
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the connection point between constrained IoT devices and ML

without any resource rich OS (e.g. Linux).

B. Machine Learning on the Tiniest End Devices

While a few years ago large data centers were needed for
the execution of ML tasks, current ML models and system
requirements to run these models have become very small so
that they can even fit into tiny microcontrollers (MCUs) [11]
– i.e., the unit in a constrained IoT devices that governs and
runs the program. This possibility opens up new applications
for ML using constrained IoT devices, including always-on
inference for wake word detection [11], [12], human activity
recognition [13], [14] and acoustic-anomaly detection [15].

Constrained devices have limited capabilities regarding their
memory, processing power, and they are often battery-operated
or utilize energy harvesting [16]. Constrained hardware plat-
forms able to run ML are currently equipped at most with a
32-bit MCU, ⇠500 KB of static RAM, a few megabyte of
Flash memory and consume only a few milliwatts of power.

The limited capabilities of constrained devices entail several
challenges for the execution of ML tasks. For example, when
referring to ML training operations, these tasks are typically
executed using dedicated ML frameworks designed to run
efficiently on powerful machines often combined with dedicated
hardware like GPUs or TPUs and with extensive math-libraries.
Models created with these frameworks cannot be directly ported
to constrained devices due to the lower hardware and software
capabilities respect more powerful computing systems. As a
consequence, the models need to be manually optimized during
a labour-intense, error-prone and often performance-degrading
process [17]. This includes deletion of complex computations
that constrained devices are not able to perform, quantizing
floating point operations to 8-bit integers and pruning less
important parameters. Another challenge derives from the fact
that IoT devices are designed, in some cases, for running
custom-made applications. In fact, the peripherals and sensors
that a constrained device is equipped with typically determine
the application that runs on it and thus the model of the ML
task used by the application itself. This implies that a model
optimized to run on a specific constrained hardware platform
may not run in other platforms due to different hardware
capabilities, peripherals, sensors, and the use of vendor-specific
libraries. The latter aspect and the effort it takes to port models
from one platform to another result in a deficiency of ML
models for constrained devices.

Despite the challenges of running ML directly on constrained
devices, there are several benefits compared to running it
in more resourceful computing environments [18]. A major
advantage of running ML applications in constrained devices is
the wide range of possible use cases it enables, as well as the
low costs of the hardware, even when deploying large numbers
of devices [6].

Ensuring a higher level of data security and user privacy is
another advantage determined by the possibility of running ML
tasks directly in the device [6]. Data can be sensitive and contain
personal or business critical information. Therefore, enabling

the possibility of making the data staying on-premise and
there being processed, eliminates the need of sending raw data
via the Internet to cloud-based services for further processing.
This aspect also aligns to other emerging ML techniques, such
as federated learning [19], which aim to address the above
mentioned security and privacy issues is a similar fashion.

From the computer networking perspective, on-device ML
allows to also reduce the amount of data offloading between
the constrained devices and the cloud, consequently reducing
the network bandwidth requirements. As a consequence, energy

efficient communication technologies like NB-IoT or LTE Cat-
M1 [20] can be used, in case communication with external
services is required by the application. Energy efficiency is
especially important considering that the constrained devices
are most probably battery-operated and equipped with low-
power MCUs that use up only a few milliwatts. Although
MCUs holds a lower processing speed compared to more
resourceful devices, ML predictions can possibly be attained
faster, as the device must not offload the data, as well as wait
for the computation of the ML prediction in the cloud and the
transmission of the result to the device again.

III. TINYMLAAS AS MACHINE LEARNING ECOSYSTEM
ENABLER

In this section, we introduce TinyMLaaS. We explain how
TinyMLaaS connects to TinyML and why we believe that
TinyMLaaS can allow to democratize ML in the context of
constrained IoT.

A. What is TinyMLaaS?

With TinyMLaaS, we aim to build a higher-level abstraction
of TinyML software that is as hardware and software agnostic
as possible. Furthermore, we will do this in an ”as-a-Service”
fashion. Why? The advantages of using specialized hardware
for ML must be balanced with the use of dedicated ML
compilers that adapt a certain ML model to the targeted
hardware platform. This hardware and associated compilers’
heterogeneity (i.e. application of various kinds of special
hardware) generates additional fragmentation. It also offers poor
flexibility against the possibility of easily switching hardware
context due to the need to re-compile the ML inference model
for the targeted device. ML compilers are very powerful tools
and we do not want to disregard their important role in the
ML ecosystem. This software abstraction is the foundation
of TinyMLaaS – a cloud or edge service designed to host a
wide set of ML compilers. It is the job of these compilers to
convert a specific ML inference model into the appropriate
format for being executed in the served device. Fig.2 shows
how the different TinyMLaaS components interact between
each other. The numbered purple circles indicate the order in
which the different sub-processes take place. To tailor an ML
inference model for running in a specific device, TinyMLaaS
needs to gather some information about the device itself, such
as CPU type, RAM and ROM size, available peripherals,
underlying software, and the correct inference model to process.
The TinyMLaaS backend will select the most suitable ML
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Fig. 2: TinyML as-a-Service block diagram

compiler and generate the compiled ML inference module
on the basis of the above parameters. The generated ML
inference module is then downloaded and installed on the
designated device. Our example implementation of TinyMLaaS
uses OMA LightweightM2M protocol [21] also to benefit
from its Firmware-over-the-air (FOTA) and Software-over-
the-air (SOTA) update capabilities. The integration between
LwM2M and IPSO Objects is harnessed, with the aim of using
a standardized model when end-devices and a TinyMLaaS
instance exchange device characteristics information, including
the representation of ML algorithm installed.

B. Why Ecosystem Matters

As stated in previous section, building and compiling ML
inference models in a seamless way and agnostically of the
underlying hardware platform is the desirable outcome for
each ML application developer and TinyMLaaS represents
an optimal solution for achieving this. However, the impact
generated by TinyMLaaS can be even more significant if
standardized mechanisms are introduced in order to allow
different TinyMLaaS-based systems talk to each other. The
interoperability among such systems could generate advantages
both from the technical and business point of view, as it would
allow chip manufacturers and software developers to impact
the ML landscape with a common underlying architecture
and, by consequence, encouraging also a fairer competition
between small and medium-sized enterprises (SMEs) and tech
giants. To this extent, the TinyMLaaS paradigm needs to be
accommodated within a wider context that includes a functional
ecosystem built around it. The goal of this section is to outline
what are the additional components needed to make TinyMLaaS
interoperable with other peer systems.

As introduced in [9], we identified three main components –
namely compiler plugin interface, orchestration protocol, and
inference module format – that, if standardized, would represent
the core of a TinyMLaaS ecosystem (Fig. 3) and would shorten
the way towards the desired interoperability. The role played by
these three ecosystem’s elements is explained in detail below.

TinyMLaaS

Compiler Plugin 
Interface

Orchestration 
Protocol

Inference Module 
Format

Fig. 3: TinyMLaaS Main Components.

ML CompilerTinyMLaaS

BuildModel 1
Model 2
Model 3

Models' repository

Download Plugin
Compiler 1

Compiler 2
Compiler 3

Fig. 4: TinyMLaaS Compiler Plugin Interface.

C. Compiler Plugin Interface

The compiler plugin interface represents a sort of middleware
abstraction that operates in order to consistently bridge the
requests submitted to the TinyMLaaS front-end with the
compiling parameters requested by the TinyMLaaS back-end.
The front-end is designed in order to receive and accept requests
from a plethora of heterogenous connected devices (e.g. MCU).
Such requests are sent with the purpose of seeking the use of
a specific ML compiler. The different ML compilers require
different customization parameters before being executed for
processing the compilation output. Therefore, we envisioned
the need of defining a common standard that makes possible
to consistently enclose such parameters among all the ML
compilers available in the back-end, without the need to adapt
the parameters to the device in use. Fig. 4 depicts such process.

D. Orchestration Protocol

The orchestration protocol component plays a key role
upon interaction between end-devices and the TinyMLaaS
infrastructure, on the basis of well-defined APIs. The function-
ality provided by this module is two-fold. First, it interacts
with the end-devices in order to gather information about
their baseline and real-time software and hardware capabilities.
This allows to ensure that any request coming from a given
device is properly managed by the TinyMLaaS back-end, as
in turn will tailor the compiling process exactly according to
the information transmitted by the orchestration component.
Second, it offers Firmware-over-the-air (FOTA) and Software-
over-the-air (SOTA) update capabilities, useful to comply with
the devices’ requests. As mentioned in the previous section,
we rely on LwM2M also as enabling technology for the
orchestration protocol because of its suitability to the embedded
IoT context and its standardized features in terms of device
management, machine-to-machine (M2M) communication and
standardized data representation models [21] . In Fig. 5, a
simplified illustration of the orchestration process is reported.
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E. Inference Module Format

The inference module role is to provide, through a LwM2M-
based SOTA and a predefined representation format, the
output processed by the ML compilers. In other words, such
module represents the component that make the ML inference
application available to the device. Once again, we reiterate
the importance of defining a standardized format that allows to
represent the functionalities of a wide range of ML compilers
and inference applications, as well as the heterogeneous features
of multiple types of real-time OS and hardware chipsets. In a
similar way to the orchestration protocol case, the output format
of such an application is tailored by the ML compiler according
to the underlying software and hardware characteristics of the
device that is using it. The large number of heterogeneous
devices and the lack of a consistent inference format model
means that this process remains fragmented. In this respect,
we look forward to bigger steps towards a standardization
process of the inference format model, so as to ensure an
easier ML software portability between devices. Fig. 6 shows
the interaction between inference module and device.

In conclusion of this section, we introduce Fig. 7, which
shows a more detailed characterization of the three interfaces
introduced earlier. Such representation outlines both additional
features and deployment options that are not thoroughly

TinyMLaaS
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Inference Module 
Format
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Fig. 7: Detailed Overview of TinyMLaaS Interfaces.

discussed in this paper because of space limitations.

IV. RESEARCH CHALLENGES

In this section, we highlight some of the most prominent
R&D challenges connected to TinyMLaaS.

Optimizing the trade-off between ML performance and

constrained devices resources represents a major requirement
for any TinyML-based system. It consists in ensuring the
optimal compromise between the ML model size, accuracy
and performance and the very limited capabilities and energy
efficiency requirements of the MCUs executing these models.

TinyML-based model’s splitting. Models’ splitting refers
to the set of techniques used for executing distributing training
operations among multiple devices ensuring the same level
of accuracy. Defining analogous the same techniques as they
are in TinyML-centric systems is unfeasible. This leads to the
need of introducing new model’s splitting and parallelism tech-
niques that take into account all the constraints characterizing
such scenarios (e.g., limited devices’ resources, intermittent
connectivity, etc.) and the need of reducing communication
overhead and utilizing computing resource efficiently.

Unified ML compiler-centric architecture. The ML
ecosystem fragmentation is not an exclusive problem of ML-
based IoT systems. The need of standardizing the interactions
between heterogeneous components represent a requirement
that can be disjointed by the IoT context and reformulated as
ML Compiler as-a-Service (MLCaaS). MLCaaS ecosystems
can enable an even greater seamless migration of a ML infer-
ence services execution between heterogeneous components.
However, enabling MLCaaS requires a major effort in the form
of open-source initiatives and in the definition of well-defined
standards and regulations.

Dynamic computation allocation between end-devices

and the edge/cloud. Optimizing offloading and onloading
of ML service execution between edge and cloud has lately
represented a compelling research challenge with many solu-
tions proposed for it. However, in the context of TinyMLaaS,
these already defined policies are unlikely to be sufficient. New
algorithms that consider the different computational power and
specifications of the processing entities, as well as the need of
consistent portability among heterogeneous devices required
in the case of local and parallel processing.

Connectivity driven ML inference provisioning. IoT
devices can embed multiple radio access technology (RAT)
interfaces. In specific scenarios, it becomes essential under-
standing what is the most adequate communication interface
to be used when the ML inference service execution requires
device-to-edge or device-to-cloud communication. Developing
efficient mechanisms that allow to tackle this challenge must
be introduced, taking into account the constrained devices
requirements, the characteristics of the data to be sent, etc.

Security and Privacy. System’s reliability, data security
and privacy represent three inherent advantages deriving by
the possibility of performing on-device data processing [6].
However, TinyMLaaS encompasses frequent interactions with
edge and cloud facilities. New end-to-end security mechanisms
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are required for guaranteeing adequate security standards,
but with the strict requirement that such mechanisms must
be as lightweight as possible in order to minimize the
overhead generated by their usage. Although emerging protocol
extensions such as Object Security for Constrained RESTful
Environments (OSCORE) [22] seem to be suitable for tackling
this challenge, additional studies are needed in order to
empirically demonstrate the feasibility of such integration.

V. CONCLUSION

In this paper, we introduced the concept of TinyMLaaS. We
presented what are the motivations, requirements and design
principles behind this new paradigm, emphasizing also what
are the steps needed in order to build a full ecosystem around it.
Finally, we also discussed additional key technical challenges
and identified open questions for future research in this area.
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