
1 

EE 459/500 – HDL Based Digital 

Design with Programmable Logic 

  

Lecture 11  

FSM, ASM, FSMD, ASMD 

Read before class:  

Chapters 4,5 from textbook  

Overview 

 Finite State Machines (FSMs) 

 State Graphs: general form 

 Algorithmic State Machine (ASM) charts 

 Finite State Machines with Datapath (FSMD) 

 Algorithmic State Machine with Datapath 

(ASMD) 



2 

FSM – general form 

State Graph  ASM chart 

 State diagram: 

• Nodes: unique states of the FSM 

• Transitional arcs: labeled with the condition that causes the 

transition 

 Algorithmic State Machine (ASM) chart is an alternative 

representation 

• Composed of a network of ASM blocks 

• ASM block: 

 State box: represents a state in the FSM 

 Optional network of decision boxes and conditional output boxes 

 A state diagram can be converted to an ASM chart and 

vice-versa 



3 

State of State Graph ASM Block 

State Graph  ASM chart 

Example Somewhat easier to 

write VHDL code for! 



4 

library ieee; 

use ieee.std_logic_1164.all; 

 

entity fsm_eg is 

   port( 

      clk, reset: in std_logic; 

      a, b: in std_logic; 

      y0, y1: out std_logic 

   ); 

end fsm_eg; 

 

architecture two_seg_arch of fsm_eg is 

   type eg_state_type is (s0, s1, s2); 

   signal state_reg, state_next: eg_state_type; 

 

begin 

 

   -- state register 

   process(clk,reset) 

   begin 

      if (reset='1') then 

         state_reg <= s0; 

      elsif (clk'event and clk='1') then 

         state_reg <= state_next; 

      end if; 

   end process; 

    

VHDL code of example 

-- next-state/output logic 

   process(state_reg,a,b) 

   begin 

      state_next <= state_reg;  -- default back to same state 

      y0 <= '0';  -- default 0 

      y1 <= '0';  -- default 0 

      case state_reg is 

         when s0 => 

            y1 <= '1'; 

            if a='1' then 

               if b='1' then 

                  state_next <= s2; 

                  y0 <= '1'; 

               else 

                  state_next <= s1; 

               end if; 

            -- no else branch 

            end if; 

         when s1 => 

            y1 <= '1'; 

            if (a='1') then 

               state_next <= s0; 

            -- no else branch 

            end if; 

         when s2 => 

            state_next <= s0; 

      end case; 

   end process; 

end two_seg_arch; 

VHDL code of example 



5 

Overview 

 Finite State Machines (FSMs) 

 State Graphs: general form 

 Algorithmic State Machine (ASM) charts 

 Finite State Machines with Datapath (FSMD) 

 ASM with Datapath (ASMD) 

Finite State Machine with Data-path (FSMD) 

 Combine an FSM and regular sequential 

circuits 

 The FSM is called control-path; examines the 

external commands and status and generates 

control signals to specify operation of regular 

sequential circuits, which are known collectively 

as data-path 

 FSMD used to implement systems described 

by RT (register transfer) methodology: 

 Operations are specified as data manipulation and 

transfer among a collection of registers 



6 

Block diagram of FSMD 

 Datapath - performs data transfer and processing operations 

 Control Unit - Determines the enabling and sequencing of the 

operations 

 

 

 

 

 

 

 

 

 The control unit receives: 

• External control inputs 

• Status signals 

 

 The control unit sends: 

• Control signals 

• Control outputs 

Control 

inputs 

Data 

inputs 

Data 

outputs 

Datapath 

Control 

outputs 

Control signals 

Status signals 

Control 

unit 

Describe properties of 

the state of the datapath  

Block diagram of FSMD (detailed) 



7 

Register Transfer Operations 

 Register Transfer Operations - the movement and 
processing of data stored in registers 

 

 Three basic components: 
• A set of registers (operands) 

• Transfer operations 

• Control of operations 

 

 Elementary operations - called microoperations 
• load, count, shift, add, bitwise "OR", etc. 

 

 Notation: rdest  f(rsrc1, rsrc2,…,rsrcn)  

Register Notation 

 Letters and numbers  – register (e.g.  R2, PC, IR) 

 Parentheses ( ) – range of register bits (e.g. R1(1), PC(7:0), 
AR(L)) 

 

 

 

 
 Arrow () – data transfer (ex. R1  R2, PC(L)  R0) 

 Brackets [ ] – Specifies a memory address (ex. R0   M[AR],   
R3  M[PC]  ) 

 Comma – separates parallel operations 

R       7 6 5 4 3 2 1 0   

        

15          8   7           0     15                  0   

PC(H)   PC(L)     R2   
  



8 

Conditional Transfer 

 If (K1 =1) then (R2  R1)  

  K1: (R2  R1) 

    where K1 is a control 

expression specifying a 

conditional execution of 

the microoperation. 

 

R1 R2 

K 1 

Clock 

Load n 

Clock 

K1 
Transfer Occurs Here 

No Transfers Occur Here 

Microoperations 

 Logical groupings: 
• Transfer - move data from one set of registers to another 

• Arithmetic - perform arithmetic on data in registers 

• Logic - manipulate data or use bitwise logical operations 

• Shift - shift data in registers 

 

Arithmetic operations 
+ Addition 
– Subtraction 
*  Multiplication 
/  Division 

 

Logical operations 

         Logical OR  

         Logical AND 

        Logical Exclusive OR 

           Not 



9 

Example Microoperations 

 R1 R1 + R2 

• Add the content of R1 to the content of R2 and place the result 

in R1. 

 PC  R1 * R6  

 

 R1  R1  R2 

 

 (K1 + K2):  R1  R1  R3  

• On condition K1 OR K2,  the content of R1 is Logic bitwise 

ORed with the content of R3 and the result placed in R1. 

• NOTE:  "+" (as in K1 + K2) means “OR.” In R1  R1 + R2, + 

means “plus”. 

Arithmetic Microoperations 

 

 

 

 

 

 

 

 Any register may be specified for source 1, source 2, 

or destination. 

 These simple microoperations operate on the whole 

word 

  

Symbolic Designation   Description   

R0    R1 + R2   Addition   

R0   R1    Ones Complement   

R0     R1 + 1   Two's Complement   

R0    R2 + R1 + 1   R2 minus R1 (2's Comp)   

R1    R1 + 1   Increment (count up)   

R1    R1  –   1   Decrement (count down)   



10 

Logical Microoperations 

Symbolic    

Designation   

Description   

R0     R1    Bitwise NOT    

R0    R1    R2   Bitwise OR (sets bits)   

R0    R1     R2   Bitwise AND (clears bits)   

R0    R1    R2   Bitwise EXOR (complements bits)   
  

Shift Microoperations 

 Let R2  = 11001001  

 

Symbolic    

Designation   

Description   

R1    sl R2    Shift Left    

R1    sr R2    Shift Right   
  

 Note:  These shifts "zero fill". Sometimes a separate 

flip-flop is used to provide the data shifted in, or to 

“catch” the data shifted out. 

 Other shifts are possible (rotates, arithmetic) 

R1 content 

10010010 

01100100 



11 

Example 

 a  a - b + 1 

 

Block diagram 

Overview 

 Finite State Machines (FSMs) 

 State Graphs: general form 

 Algorithmic State Machine (ASM) charts 

 Finite State Machines with Datapath (FSMD) 

 Algorithmic State Machine with Datapath 

(ASMD) 



12 

 Extend ASM chart to incorporate RT operations and 

call it ASMD (ASM with data-path): 

ASMD segment Block diagram: 

Implementing the RT operations 

Algorithmic State Machine with Data-path (ASMD) 

Location of RT operation inside ASM block 

ASM block Block diagram 



13 

Decision box with a register 

 RT operation in an ASMD chart is controlled by an 

embedded clock signal 

 Destination register is updated when the machine exits 

the current ASMD block, but not within the block! 

 Example: r  r – 1 means 

 r_next <= r_reg – 1; 

 r_reg <= r_next at the rising edge of the clock (when 

machine exits current block) 

Example 

 Fibonacci number circuit 

 A sequence of integers 

  fib(i) =  

0, if i = 0 

1 if i = 1 

fib(i-1) + fib(i-2), if i > 1 



14 

ASMD chart 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.numeric_std.all; 

 

entity fib is 

    port( 

        clk, reset: in std_logic; 

        start: in std_logic; 

        i: in std_logic_vector(4 downto 0); 

        ready, done_tick: out std_logic; 

        f: out std_logic_vector(19 downto 0) 

    ); 

end fib; 

 

architecture arch of fib is 

   type state_type is (idle,op,done); 

   signal state_reg, state_next: state_type; 

   signal t0_reg, t0_next, t1_reg, t1_next: unsigned(19 downto 0); 

   signal n_reg, n_next: unsigned(4 downto 0); 

 

begin 

 

   -- fsmd state and data registers 

   process(clk,reset) 

   begin 

      if reset='1' then 

         state_reg <= idle; 

         t0_reg <= (others=>'0'); 

         t1_reg <= (others=>'0'); 

         n_reg <= (others=>'0'); 

      elsif (clk'event and clk='1') then 

         state_reg <= state_next; 

         t0_reg <= t0_next; 

         t1_reg <= t1_next; 

         n_reg <= n_next; 

      end if; 

   end process; 

VHDL code 



15 

 -- fsmd next-state logic 

   process(state_reg,n_reg,t0_reg,t1_reg,start,i,n_next) 

   begin 

      ready <='0'; 

      done_tick <= '0'; 

      state_next <= state_reg; 

      t0_next <= t0_reg; 

      t1_next <= t1_reg; 

      n_next <= n_reg; 

      case state_reg is 

         when idle => 

            ready <= '1'; 

            if start='1' then 

               t0_next <= (others=>'0'); 

               t1_next <= (0=>'1', others=>'0'); 

               n_next <= unsigned(i); 

               state_next <= op; 

            end if; 

         when op => 

            if n_reg=0 then 

               t1_next <= (others=>'0'); 

               state_next <= done; 

            elsif n_reg=1 then 

               state_next <= done; 

            else 

               t1_next <= t1_reg + t0_reg; 

               t0_next <= t1_reg; 

               n_next <= n_reg - 1; 

           end if; 

         when done => 

            done_tick <= '1'; 

            state_next <= idle; 

      end case; 

   end process; 

 

   -- output 

   f <= std_logic_vector(t1_reg); 

 

end arch; 

Summary 

 Algorithmic State Machine charts are 

somewhat more convenient to use to write 

behavioral VHDL code 

 Finite State Machines with Datapath 

(FSMD) and Algorithmic State Machine 

with Datapath (ASMD) are useful when 

we care about the internal structure of the 

circuit (e.g., we want the synthesis tool to 

preserve the pipeline structure) 


