
1

EE-379 Embedded Systems and Applications
Interrupts (1)

Cristinel Ababei
Department of Electrical Engineering, University at Buffalo

Spring 2013
Note: This course is offered as EE 459/500 in Spring 2013

Outline

• Introduction

• NVIC and Interrupt Control

• Interrupt Pending

• Examples

• Interrupt Service Routines

2

How does it work?

• Something tells the processor core (which is
running the main execution flow) there is an
interrupt/exception

• Core transfers control to code that needs to be
executed to address the interrupt

• Said code “returns” to the main (old) program

Some questions
• How do you figure out where to branch/jump to?

– If you know number the possible interrupt cases, and an
interrupt comes in, you can just branch to a location, using that
number as an offset

• How to you ensure that you can get back to where you
started?
– Store return address to stack or dedicated register?

• Don’t we have a pipeline? What about partially executed
instructions?
– Complex architectures

• What if we get an interrupt while we are already
“processing” an interrupt?
– Nested interrupts: handle directly, ignore, prioritize

• What if we are in a “critical section?”
– Prioritization

3

Interrupts

• An interrupt is the automatic transfer of software
execution in response to a hardware event that is
asynchronous with the current software
execution

• This hardware event is called a trigger and it
breaks the execution flow of the main thread of
the program

• The event causes the CPU to stop executing the
current program and begin executing a special
piece of code called an interrupt handler or
interrupt service routine (ISR)

• Typically, the ISR does some work and then
resumes the interrupted program

Interrupts

• The hardware event can either be:
 1) A busy-to-ready transition in an external I/O device.

Caused by the external world
– Peripheral/device, e.g., UART input/output device
– Reset button, Timer expires, Power failure, System error
– Names: exception, interrupt, external interrupt

 2) An internal event
– Bus fault, memory fault
– A periodic timer
– Div. by zero, illegal/unsupported instruction
– Names : exception, trap, system exception

• When the hardware needs service, signified by a busy
to ready state transition, it will request an interrupt by
setting its trigger flag

4

Cortex-M3 Interrupts

• Exceptions:
– System exceptions: numbered 1 to 15
– External interrupt inputs: numbered from 16 up

• Different numbers of external interrupt inputs
(from 1 to 240) and different numbers of priority
levels

• Value of the current running exception is
indicated by:
– The special register Interrupt Program Status Register

(IPSR) or
– From the NVIC’s Interrupt Control State Register (the

VECTACTIVE field)

List of system exceptions

5

List of external interrupts

Interrupt Programming

• To arm (disarm) a device/peripheral means to
enable (shut off) the source of interrupts. Each
potential interrupting trigger has a separate
“arm” bit. One arms (disarms) a trigger if one is
(is not) interested in interrupts from this source.

• To enable (disable) means to allow interrupts at
this time (postponing interrupts until a later
time). On the ARM Coretx-M3 processor, there is
one interrupt enable bit for the entire interrupt
system. In particular, to disable interrupts we set
the interrupt mask bit, I, in PRIMASK register.

6

Interrupt Programming

• Interrupts on the Cortex-M3 are controlled by the
Nested Vectored Interrupt Controller (NVIC)

• To activate an “interrupt source” we need to set
its priority and enable that source in the NVIC:

Activate = Set priority + Enable source in NVIC

• This activation is in addition to the “arm” and
“enable” steps discussed earlier

Outline

• Introduction

• NVIC and Interrupt Control

• Interrupt Pending

• Examples

• Interrupt Service Routines

7

Nested Vectored Interrupt Controller (NVIC)

• Interrupts on the Cortex-M3 are controlled by the
Nested Vector Interrupt Controller (NVIC)

• NVIC supports 1 to 240 external interrupt inputs
(commonly known as IRQs)

• NVIC control registers are accessible as memory-mapped
devices

• NVIC can be accessed as memory location 0xE000E000

• NVIC contains:
– control registers and control logic for interrupt processing

– registers for the MPU

– SYSTICK Timer

– debugging controls

• In the LPC17xx, the NVIC supports 35 vectored interrupts

Simplified Cortex-M3 Architecture

8

NVIC Programmers Model

From Cortex-M3 Technical Reference Manual

Memory
Map

9

Basic Interrupt Configuration

• Each external interrupt has several registers
associated with it:
– Enable and clear enable registers
– Set-pending and clear-pending registers
– Active status
– Priority level

• In addition, a number of other registers can also
affect the interrupt processing:
– Exception-masking registers (PRIMASK, FAULTMASK,

and BASEPRI)
– Vector Table Offset register
– Software Trigger Interrupt register
– Priority Group

Interrupt Enable and Clear Enable
• The Interrupt Enable register is programmed via two addresses

– To set the enable bit, we write to the SETENA register address
– To clear the enable bit, you need to write to the CLRENA register address

See page 77-80 of LPC17xx user manual for description of ISER0,ISER1 and ICER0,ICER1!

SETENA0/1 is a general name to refer to this
register. Consult the MCU User Manual for your
particular MCU to see what they are actually called.
For example, in the case of LPC17xx these registers
are called ISER0 and ISER1. See page 77-78 of
LPC17xx user manual

10

Interrupt Pending and Clear Pending
• If an interrupt takes place but cannot be executed immediately (e.g., if another

higher-priority interrupt handler is running), it will be pended
• The interrupt pending status can be accessed through the Interrupt Set Pending

(SETPEND) and Interrupt Clear Pending (CLRPEND) registers

See page 81-84 of LPC17xx user manual for description of ISPR0,ISPR1 and ICPR0,ICPR1!

Active Status
• Each external interrupt has an active status bit.
• When the processor starts the interrupt handler, the bit

is set to 1 and cleared when the interrupt return is
executed.

• Interrupt Active Bit Status registers
– 0xE000E300-0xE000E31C

See page 85-86 of LPC17xx user manual for description of IABR0,IABR1!

11

Priority Levels

• Each external interrupt has an associated priority-
level register, which has a maximum width of 8
bits and a minimum width of 3 bits

• Interrupt Priority Level registers
– 0xE000E400-0xE000E4EF

See page 87-89 of LPC17xx user manual for description of IPR0..IPR8!

Interrupt Priority

• An exception can be carried out can be
affected by the priority of the exception

• A higher-priority (smaller number in priority
level) exception can preempt a lower-priority
(larger number in priority level) exception

• Cortex-M3 supports three fixed highest-
priority levels and up to 256 levels of
programmable priority (a maximum of 128
levels of preemption

• Most Cortex-M3 chips have fewer supported
levels - for example, 8, 16, 32, ...

12

Levels of priority

• Reduction of levels is implemented by cutting out
the LSB part of the priority configuration
registers. Example of 3-bit implemented:

• In this example, we have possible priority levels:
– 0x00 (high priority), 0x20, 0x40, 0x60, 0x80, 0xA0,

0xC0, and 0xE0 (the lowest)

• LPC17xx has 32 programmable interrupt priority
levels

Interrupt priority

• Priority can be sub-divided into priority groups

• Splits priority register into two halves:

– Preempt priority – indicates if an interrupts can
preempt another

– Sub priority – used if 2 interrupts of the same
group arrive at the same time

13

Vector Tables

• When an exception takes place and is being
handled by the Cortex-M3, the processor will
need to locate the starting address of the
exception handler

• This information is stored in the vector table

• Each exception has an associated 32-bit vector
that points to the memory location where the
ISR that handles the exception is located

• Vectors are stored in ROM at the beginning of
the memory

Vector Table
• Exception vector table after power-up is located at address

0x00000000:

• ROM location 0x00000000 has the initial stack pointer
• Location 0x00000004 contains the initial program counter (PC),

which is called the reset vector
• Reset vector points to a function called reset handler, which is the

first thing executed following reset
• Vector table can be relocated to change interrupt handlers at

runtime (vector table offset register)

14

Vector Table
• Example of a few vectors as defined inside

startup_LPC17xx.s:

__Vectors

 DCD __initial_sp ; Top of Stack

 DCD Reset_Handler ; Reset Handler

 DCD NMI_Handler ; NMI Handler

 DCD HardFault_Handler ; Hard Fault Handler

 ...

 ; External Interrupts

 DCD WDT_IRQHandler ; 16: Watchdog Timer

 DCD TIMER0_IRQHandler ; 17: Timer0

 ...

 DCD UART0_IRQHandler ; 21: UART0

Special registers: PRIMASK, FAULTMASK, and BASEPRI

15

Software interrupts

• Software interrupts can be generated in two
ways:
– Use the SETPEND register

– Use the Software Trigger Interrupt Register (STIR)

See page 90 of LPC17xx user manual for description of STIR!

The SYSTICK Timer

• Often a hardware timer is used:
– To generate interrupts so that the OS can carry out

task management

– As an alarm timer, for timing measurement, etc.

• Cortex-M3 processor includes a simple timer:
24-bit down counter

• The SYSTICK Timer is integrated with the NVIC
and can be used to generate a SYSTICK
exception (exception type #15)

• SYSTICK Timer is controlled by four registers

16

SYSTICK Timer Control and Status Regs

See page 505 of LPC17xx user manual for description !

17

Outline

• Introduction

• NVIC and Interrupt Control

• Interrupt Pending

• Examples

• Interrupt Service Routines

Interrupt Pending

• The normal case
– Once Interrupt Request is seen, processor puts it in

“pending” state even if hardware drops the request

– IPS is cleared by the hardware once we jump to the ISR

18

Interrupt pending
• If the pending status is cleared before the processor starts

responding to the pended interrupt (e.g., because pending
status register is cleared while PRIMASK/FAULTMASK is set to
1), the interrupt can be canceled

• The pending status of the interrupt can be accessed in the
NVIC and is writable, so you can clear a pending interrupt or
use software to pend a new interrupt by setting the pending
register

Active status during interrupt handling

• When the processor starts to execute an
interrupt, the interrupt becomes active and the
pending bit will be cleared automatically

19

Interrupt source continues to hold

• If an interrupt source continues to hold the interrupt
request signal active, the interrupt will be pended
again at the end of the interrupt service routine

Interrupt is pulsed several times

• If an interrupt is pulsed several times before
the processor starts processing it, it will be
treated as one single interrupt request

20

Interrupt de-asserted, then pulsed again

• If an interrupt is de-asserted and then pulsed
again during the interrupt service routine, it will
be pended again

Outline

• Introduction

• NVIC and Interrupt Control

• Interrupt Pending

• Examples

• Interrupt Service Routines

21

Procedure for setting up an interrupt

1) When the system boots up, the priority group
register might need to be set up

– By default the priority group 0 is used (bit[7:1] of
priority level is the preemption level and bit[0] is the
subpriority level)

2) Copy the hard fault and NMI handlers to a new
vector table location if vector table relocation is
required

3) The Vector Table Offset register should also be
set up to get the vector table ready (optional)

Procedure for setting up an interrupt

4) Set up the interrupt vector for the interrupt

– Since the vector table could have been relocated,
we might need to read the Vector Table Offset
register, then calculate the correct memory
location for your interrupt handler

– This step might not be needed if the vector is
hardcoded in ROM

5) Set up the priority level for the interrupt

6) Enable the interrupt

22

Example 1: The program in assembly (1)

Example 1: The program in assembly (2)

23

Simplified procedure for setting up an
interrupt

• If the application is stored in ROM and there is no
need to change the exception handlers, we can have
the whole vector table coded in the beginning of
ROM in the Code region (0x00000000)

• This way, the vector table offset will always be 0 and
the interrupt vector is already in ROM

• The only steps required to set up an interrupt are:

1) Set up the priority group, if needed

2) Set up the priority of the interrupt

3) Enable the interrupt

Example 2: Blink LED
#include "LPC17xx.h"

int main (void)

{

 // (1) Timer 0 configuration (see page 490 of user manual)

 LPC_SC->PCONP |= 1 << 1; // Power up Timer 0 (see page 63 of user manual)

 LPC_SC->PCLKSEL0 |= 1 << 2; // Clock for timer = CCLK, i.e., CPU Clock (see page 56 of user manual)

 LPC_TIM0->MR0 = 1 << 23; // Give a value suitable for the LED blinking

 // frequency based on the clock frequency (see page 492 and 496 of user manual)

 LPC_TIM0->MCR |= 1 << 0; // Interrupt on Match 0 compare (see page 492 and 496 of user manual)

 LPC_TIM0->MCR |= 1 << 1; // Reset timer on Match 0 (see page 492 and 496 of user manual)

 LPC_TIM0->TCR |= 1 << 1; // Manually Reset Timer 0 (forced); (see page 492 and 494 of user manual)

 LPC_TIM0->TCR &= ~(1 << 1); // Stop resetting the timer (see page 492 and 494 of user manual)

 // (2) Enable timer interrupt; TIMER0_IRQn is 1, see lpc17xx.h and page 73 of user manual

 NVIC_EnableIRQ(TIMER0_IRQn); // see core_cm3.h header file

 LPC_TIM0->TCR |= 1 << 0; // Start timer (see page 492 and 494 of user manual)

 LPC_SC->PCONP |= (1 << 15); // Power up GPIO (see lab1)

 LPC_GPIO1->FIODIR |= 1 << 29; // Put P1.29 into output mode. LED is connected to P1.29

 while (1) // Why do we need this?

 {

 // do nothing

 }

 return 0;

}

24

// Here, we describe what should be done when the interrupt on Timer 0 is handled;

// We do that by writing this function, whose address is “recorded” in the vector table

// from file startup_LPC17xx.s under the name TIMER0_IRQHandler;

void TIMER0_IRQHandler(void)

{

 if ((LPC_TIM0->IR & 0x01) == 0x01) // if MR0 interrupt

 {

 LPC_TIM0->IR |= 1 << 0; // Clear MR0 interrupt flag (see page 492 and 493 of user manual)

 LPC_GPIO1->FIOPIN ^= 1 << 29; // Toggle the LED (see lab1)

 }

}

Example 2: Blink LED

Brief description of Example 2
• Set up Timer 0 to run off the CPU Clock (CCLK)
• Match 0 is set to 2^23
• Ask Timer 0 to be reset on Match 0 and also an interrupt to

be generated when Match 0 occurs
• The timer starts, counts from 0 to 2^23. At this point, match

occurs. The timer is reset and the interrupt occurs
• Inside the interrupt handler, we check for the source of the

interrupt (Timer 0 can produce interrupts from many
sources like Mat0, Mat1 etc.) and then toggle the LED

• Note: Because the start up code gets the chip running at
100Mhz by default, 1 tick or period of the timer = 1/100Mhz
= 10 ns. Hence (2^23 + 1) ticks = 0.08388609 seconds. You
should see the LED blinking every other 0.083 s.

• Assignment: Create a uVision project and verify this example
during the next lab session

25

Example 3: Blink LED
#include "LPC17xx.h“

volatile uint32_t del;

void my_software_delay(uint32_t delay);

int main (void)

{

 NVIC_EnableIRQ(TIMER0_IRQn); // Enable Timer 0 interrupt

 LPC_SC->PCONP |= (1 << 15); // Power up GPIO

 LPC_GPIO1->FIODIR |= 1 << 29; // Put P1.29 into output mode. LED is connected to P1.29

 while(1)

 {

 my_software_delay(1 << 24); // Wait for about 1 second

 // This is a “software interrupt” as we “call” it from within

 // the program; It is not triggered from the outside;

 NVIC_SetPendingIRQ(TIMER0_IRQn); // Software interrupt

 }

 return 0;

 }

Example 3: Blink LED
void TIMER0_IRQHandler (void)

{

 LPC_GPIO1->FIOPIN ̂ = 1 << 29; // Toggle the LED

}

void my_software_delay(uint32_t delay)

{

 uint32_t i;

 for (i = 0; i < delay; i++) {

 del = i; // do this so that the compiler does not optimize away the loop;

 }

}

26

Outline

• Introduction

• NVIC and Interrupt Control

• Interrupt Pending

• Examples

• Interrupt Service Routines

Interrupt Service Routines (ISRs)
• When an interrupt/exception takes place, a number of

things happen:

 1. Stacking (automatic pushing of eight registers’ contents to stack)
 - PC, PSR, R0–R3, R12, and LR

2. Vector fetch (reading the exception handler starting address
from the vector table)

3. Exception vector starts to execute. On the entry of the exception
handler, a number of regs are updated:

 - stack pointer (SP) to new location
 - IPSR (low part of PSR) with new exception number
 - program counter (PC) to vector handler
 - link register (LR) to special value EXC_RETURN

• Several other registers get updated
• Latency: as short as 12 cycles

27

Interrupt/Exception Exits
• At the end of the exception handler, an exception exit

(a.k.a interrupt return in some processors) is required to
restore the system status so that the interrupted program
can resume normal execution

• There are three ways to trigger the interrupt return
sequence; all of them use the special value stored in the
LR in the beginning of the handler:

Credits and references

• Joseph Jiu, The Definitive guide to the ARM
Cortex-M3, 2007 (Chapters 7,8,9 and
Appendices C,D)

• LPC17xx User’s Manual (Chapters 6,23)

