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a b s t r a c t 

We introduce a novel algorithm for dynamic energy management (DEM) under performance constraints 

in chip multi-processors (CMPs). Using the novel concept of delayed instructions count, performance loss 

estimations are calculated at the end of each control period for each core. In addition, a Kalman filtering 

based approach is employed to predict workload in the next control period for which voltage-frequency 

pairs must be selected. This selection is done with a novel dynamic voltage and frequency scaling (DVFS) 

algorithm whose objective is to reduce energy consumption but without degrading performance beyond 

the user set threshold. Using our customized Sniper based CMP system simulation framework, we demon- 

strate the effectiveness of the proposed algorithm for a variety of benchmarks for 16 core and 64 core 

network-on-chip based CMP architectures. Simulation results show consistent energy savings across the 

board. We present our work as an investigation of the tradeoff between the achievable energy reduction 

via DVFS when predictions are done using the effective Kalman filter for different performance penalty 

thresholds. 
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. Introduction 

Chip multi-processors (CMPs) have become the norm in most

omputing systems, including desktop computers, portable devices,

ervers and datacenters also called warehouse scale computers

WSCs). One of the biggest challenges that designers face in this

ontext is energy consumption, which is desired to be minimized,

deally without affecting the achievable performance. This is in-

reasingly important due to the advent and wide spread of mobile

evices but also due to the increasingly large energy consumption

ootprint of datacenters. We are interested in reducing energy con-

umption in mobile devices in order to prolong battery life. Re-

ucing energy consumption in datacenters reduces costs and can

ave a beneficial impact on the environment. For example, in 2013,

.S. datacenters consumed an estimated 91 billion kilowatt-hours

f electricity, enough to power twice the households in New York

ity. By 2020, estimated consumption will increase to 140 billion

ilowatt-hours, costing American businesses $13 billion per year

n electricity bills and causing the emission of nearly 150 million

etric tons of carbon pollution annually [1] . According to the U.S.

nergy Information Administration, that is about 7% of total com-

ercial electric energy consumption and it is projected that this
∗ Corresponding author. 

E-mail addresses: milad.ghorbanimoghaddam@marquette.edu (M.G. Moghad- 

am), cristinel.ababei@marquette.edu (C. Ababei). 

p  

i  

c  

c  

ttp://dx.doi.org/10.1016/j.micpro.2017.08.005 

141-9331/© 2017 Elsevier B.V. All rights reserved. 
umber will increase [2] . Therefore, improving energy efficiency is

ot only important for the cost to companies, but for the environ-

ental footprint of these WSCs as this computing domain rapidly

xpands [3] . Reducing energy consumption in CMPs has the addi-

ional benefit of reducing power dissipation, which in turn lowers

hip temperatures that have a beneficial impact on the lifetime re-

iability of these devices and systems. 

One of the most popular techniques to enable energy optimiza-

ions is dynamic voltage and frequency scaling (DVFS). Lowering

nly the clock frequency of a core helps to reduce the average

ower consumption for a given application while the total energy

onsumption remains the same to execute the application. Reduc-

ng the average power consumption in turn lowers the chip tem-

erature, however, at the expense of longer execution times for the

pplication. Lowering the supply voltage helps to reduce the to-

al power consumption and this helps in turn to reduce the total

nergy consumption that is needed for the execution of a given

pplication. DVFS changes both voltage and frequency dynamically

nd can be used to exploit both above benefits. However, it usually

omes at the price of performance degradation due to frequency

hrottling. In the case of multicore processors, per-core DVFS is

ot yet widely supported (Intel Haswell-EP and Samsung Exynos

rocessors are known to support it). However, many recent stud-

es have shown the benefits of per-core or per-cluser-of-cores DVFS

apabilities [4–9] . Our work is under the assumption that such per-

ore DVFS may be possible in the future multicore processors and

http://dx.doi.org/10.1016/j.micpro.2017.08.005
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it is under this assumption that we implement and test the pro-

posed ideas inside the Sniper system simulator. 

In this paper, we introduce a novel algorithm for dynamic en-

ergy management (DEM) under performance constraints in future

chip multi-processors with 16 and 64 core network-on-chip (NoC)

based processors. We focus on processors where the communica-

tion is done via NoCs because they are becoming increasingly pop-

ular for processors with large numbers of cores that we investigate

in our simulations. However, our ideas are applicable to traditional

bus based processors as well. However, in our paper we do not in-

vestigate them because for large number of cores buses may not

be scalable. The proposed algorithm uses a very effective heuristic

that employs the DVFS technique and an efficient workload pre-

diction method based on Kalman filtering. We test our algorithm

extensively on a variety of benchmarks and report simulation re-

sults obtained with a system simulation tool, Sniper, that show the

effectiveness of the algorithm to reduce energy consumption un-

der performance constraints. We make our implementation pub-

licly available so that other researchers can duplicate and compare

to our results. Currently, to the best of our knowledge, we are not

aware of any such publicly available algorithm implementation tar-

geting 16 and 64 core processors which has been tested on such a

large number of benchmarks. 

The remainder of this paper is organized as follows. In the next

section, we briefly review related literature. Then, we present back-

ground information on Kalman filtering, which is the primary es-

timation technique that we use in this paper. In Section 4 , we

present the proposed dynamic energy management of chip multi-

processors (CMPs) under performance constraints. Section 5 re-

ports simulation results. Finally, we conclude and summarize our

contributions in Section 6 . 

2. Related work 

A large number of previous studies used dynamic voltage and

frequency scaling (DVFS). DVFS is one of the most popular tech-

niques that has been used for the optimization of various figures of

merit in systems-on-chip (SoCs), chip multi-processors (CMPs), and

general purpose graphics processor units (GPGPUs), including ther-

mal profile, power, energy, and lifetime reliability. These previous

studies developed optimization algorithms that use the DVFS tech-

nique to select voltage-frequency pairs for different cores or com-

ponents such that the thermal profile becomes more uniform and

hotspots are eliminated, power dissipation or energy consump-

tion is reduced, and lifetime reliability is prolonged with minimal

degradation in performance. 

Previous works have employed a variety of methods including

machine learning [10–12] , game theory [13] , and convex optimiza-

tion [14] to find the optimal voltage-frequency pairs to manage

the energy consumption of homogeneous (i.e., formed by identi-

cal cores) processor. More recently, heterogeneous processors are

exploited towards additional optimization opportunities. For ex-

ample, the study in [15] proposed a joint temperature and en-

ergy management solution for heterogeneous multicore processors.

Their heuristic uses both DVFS and temperature- and performance-

aware task assignment strategy that maximizes the energy savings,

while maintaining the temperature at safe levels. 

While in this paper we focus at the processor level and as-

sume per-core DVFS capability, previous work employed DVFS also

at the cluster of compute nodes levels. For example, the study

in [17] presented a DVFS that automatically adapted the voltage

and frequency for energy savings at runtime in high performance

computing clusters formed by four Athlon64-based compute nodes

connected via Gigabit Ethernet and another four-node quad-CPU

cluster based on the Celestica A8440 server. Similarly, the study in

[18] presented a performance-prediction model that is used by a
er-CPU DVFS algorithm that makes DVFS decisions based on the

ndex of CPU intensiveness. They verified the algorithm in a 9-

ode power-aware cluster formed by dual core processors. Other

VFS algorithms applied at the cluster of CPU nodes level include

19,20] . Some recent work also took a more holistic approach and

pplied DVFS to both CPU and the DRAM subsystem to achieve ad-

itional energy savings. They reported for a server platform with

n Intel i5-4590 quad-core processor and 8 GB of main memory as

uch as 22% energy savings with a low performance loss of only

.8%. 

Most previous works focusing at the processor level rely on

ome form of performance estimates, which are used inside such

ptimization algorithms. These estimates are computed usually by

arious counters that count stall cycles and last-level (e.g., L2)

ache misses [23] , leading loads cycles (due to loads as non-

peculative reads that result in last-level cache misses) [24] , en-

anced leading loads cycles (takes into account both variable

emory access latency and performance effects of prefetching)

25] , and off-chip (L2) I-cache misses and off-chip (L2) D-cache

oad misses [26] . 

The majority of these methods focus on last-level cache miss

ycles and non-pipelined stall cycles, thus, they are very sensitive

o the accuracy of counting misses and stalls. In this paper, we

liminate the issues related to counting these misses and stalls

y proposing a new technique called delayed instruction count.

e present a new heuristic algorithm for dynamic energy man-

gement (DEM) of chip multi-processors. It also employs the DVFS

echnique to identify the best VF pairs for all cores of the CMP. This

s done using accurate and efficient estimations of the average cy-

les per instruction and the instruction count, which are done us-

ng a Kalman filtering technique. Our algorithm uses the Kalman

lter technique, which has been proven to provide accurate esti-

ations. For example, recently, the study in [16] employed a com-

ination of recursive least squares (RLS) and Kalman filters (KF)

o estimate processor package temperature and to construct a dy-

amic energy management controller to predict the optimal volt-

ge/frequency setting to achieve maximum energy efficiency under

emperature constraints. The following highlights the main contri-

utions of this paper: 

• The proposed energy management algorithm is very efficient

and effective. It provides consistent energy savings under a

given performance constraint for all benchmarks that we inves-

tigated. 

• Because the proposed algorithm is implemented for each core

separately it is easily scalable even to heterogeneous multi-

processors and systems as well. 

• We investigate future network-on-chip based chip multi-

processors with 16 and 64 core architectures. 

We would like to emphasize that our work is an investigation

f the tradeoff between the achievable energy reductions via DVFS

hen predictions are done using the effective Kalman filter for dif-

erent performance penalty thresholds rather than a claim of the

est dynamic energy management approach out there, which is ac-

ually challenging to identify. That is because there are many previ-

us studies who proposed various energy reduction techniques and

ho made various claims for single or multicore processors, for

us based or network-on-chip based multicores, with validations

n simulation or on real hardware but for relatively small number

f cores. Please note that none of the previous approaches made

heir implementation publicly available. This makes replication of

esults very difficult if not impossible. 
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Fig. 1. Kalman filter predict phase and update phase procedure. 
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. Background on Kalman filtering 

In this section, we present a brief description of Kalman filter-

ng, which we use later in this paper as the primary estimation

echnique to estimate the average cycles per instruction and the

nstruction count for the next control period. The Kalman filter

ses a set of recursive equations and employs a feedback control

echanism in a way that minimizes the variance of the estimation

rror [27] . It is an adaptive filter applied to predict the state x of a

iscrete-time controlled process. Using the notation from [28] , the

rocess can be described by the following state and output equa-

ions. 

 n = Ax n −1 + Bu n −1 + w n −1 (1)

 n = Hx n + v n (2)

here A, B , and H are matrices usually. A is the state transition

odel applied to the previous state x n −1 . It relates the states at

ime steps n − 1 and n , in the absence of process noise or control

nput. B relates the optional control input u to the state x , and the

atrix H relates the state x to the measurement or observation

 . The random variable w n −1 models the process noise assumed

o be a white Gaussian noise with zero mean and covariance Q,

 ∼ N (0, Q ). Similarly, the random variable v n is the measurement

oise also assumed to have a Gaussian distribution with zero mean

nd covariance R , that is independent from Q, v ∼ N (0, R ). 

Then, we define the a priori and a posteriori estimate errors as

 n̄ = x n − ˆ x −n and e n = x n − ˆ x n , where ˆ x −n is our a priori state esti-

ate given the knowledge on the process prior to step n and ˆ x n 
s our a posteriori state estimate after measurement z n has been

ade. Based upon these estimates, the a priori and a posteriori es-

imate error covariances are given by the following expressions: 

 

−
n = E[ e −n e 

−T 
n ] (3)

 n = E[ e n e 
T 
n ] (4)

To estimate the states of a process with measurements, the

alman filter employs a feedback control technique in which the

tate at some time is estimated first and feedback is then provided

n the form of noisy measurements. Thus, a Kalman filter is con-

tructed in two phases. The first phase is called the predict phase

also called the time update phase), and here the state x is pre-

icted a priori as ˆ x −n . The second phase is called the update phase

also called the measurement update phase). This is where the pre-

icted ˆ x −n is updated a posteriori as ˆ x n . 

In the predict phase, the filter first projects the state ahead

rom the previous state ˆ x n −1 and certain input matrix Bu n 1 . The

lter then projects the error covariance ahead with process noise

ovariance Q . The two equations that accomplish that are: 

ˆ 
 

−
n = A ̂

 x n −1 + Bu n −1 (5) 

 

−
n = AP n −1 A 

T + Q (6)

here P −n and P n represent the estimated error covariance for a

riori and a posteriori errors, respectively, at time n . They are cal-

ulated as shown in Eqs. (3) and (4) . 

The update phase starts right after the predict phase with the

easurement of the actual state value at time n . The three equa-

ions utilized in this phase are: 

 n = P −n H 

T (HP −n H 

T + R ) −1 (7)

ˆ 
 n = 

ˆ x −n + K n (z n − H ̂

 x −n ) (8)
 n = (1 − K n H) P −n (9)

The Kalman gain, K n , is first computed by using the a priori es-

imate error covariance P −n and measurement noise covariance R .

t is chosen to maximize the a posteriori error covariance P n . The

lter then updates the current state matrix ˆ x n and a posteriori esti-

ate error covariance P n , using the Kalman gain. Fig. 1 shows how

alman filter works. 

In this paper, we have selected the use the Kalman filter based

n our investigations and literature survey that we conducted be-

ore. We have found that the Kalman filter had been proven to be

ne of the best techniques in terms of complexity of implemen-

ation in software only, efficiency, and effectiveness in making ac-

urate predictions over a short horizon. Because, in this paper, we

re interested in investigating the tradeoff between energy savings

nd performance degradation, for varying performance degradation

hresholds, we believe that the Kalman filter technique is an effec-

ive way to study this tradeoff. 

. Dynamic energy management under performance 

onstraints 

In this section, we describe the proposed DVFS based dynamic

nergy minimization (DEM) algorithm under performance con-

traints. We first describe how prediction is employed in order to

roactively estimate performance losses and then we discuss the

lock diagram of the algorithm, which will be implemented on top

f a CMP simulator and used later to conduct simulation experi-

ents. 

.1. Performance loss estimation 

The idea of the proposed dynamic energy management is to

ontinuously monitor the CMP system operation and to periodi-

ally make decisions to tune different control knobs with the ob-

ective of shifting the system’s operation to states where energy

onsumption is reduced as much as possible but without degra-

ation of performance beyond the user specified threshold. In our

ase the knob is represented by the voltage-frequency (VF) pairs,

hich can be set individually for each of the cores of the CMP pro-

essor, effectively done as part of the DVFS algorithm. This is under

he assumption that by default (i.e., in the reference or base case)

ll cores operate at the highest frequency to achieve the best pos-

ible performance. Tuning the knob translates into frequency throt-

ling or frequency increase (if throttling has been done before for

 given core), at opportune times, in order to save energy. 

The key challenge in achieving that is to find a way to dynam-

cally change between frequency voltage pairs such that the per-

ormance degradation is not more than the acceptable threshold,
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Fig. 2. Example utilized to illustrate the two different average cycles per instruc- 

tion, CPI and CPI ′ , which are used to estimate the total execution time. 
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which is set by the user as a percentage, such as 5% performance

degradation. The performance constraint is what complicates the

problem in this case. We address this challenge by introducing a

new concept, that of delayed instructions count (DIC) , which we

use to calculate dynamically the amount of performance loss (PL)

that we would introduce if we were to switch the current voltage-

frequency pair for a given core for the next control period to a

throttling pair (i.e., lower frequency). This amount of performance

loss is estimated with respect to the reference case, which is al-

ways that of the highest frequency. We describe next the deriva-

tion of the expression that we propose to use for the estimation of

performance loss. 

Assume that we denote with CPI (cycles per instruction) the av-

erage CPU cycles per instruction when the CPU is not stalled and

does useful work at a clock frequency that we refer to as f cpu .

Assume also that we denote with CPI ′ the average system cycles

per instruction that the CPU is stalled because it has to wait due

to branch misses, TLB misses, lowest level cache misses, pipeline

stalls, etc. Note that with these notations, we consider the execu-

tion of a given instruction as being made up of two portions. One

portion is given by the CPI as average number of CPU frequency

cycles per instruction and the other portion is given by CPI ′ as av-

erage number of system frequency cycles per instruction. This is

illustrated for a simple example in Fig. 2 . 

The performance of a processor for a given application is quan-

tified via the total execution time, T total , given by the following ex-

pression. 

T total = I ×
(

CP I 

f cpu 
+ 

CP I ′ 
f sys 

)
(10)

Where I is the total number of instructions, f cpu is the clock fre-

quency that the processor is operated at, and f sys is the system

clock frequency. 

The total execution time of the application is partitioned into a

number of control periods. During the execution of the application,

the system calls the proposed algorithm at the end of each control

period in order to decide about the VF pairs for all cores during

the next control period. Assume we refer to such periods with the

generic index P . Then, applying the same rationale as that for de-
iving Eq. (10) , for a generic control period P , we can write the

xpression for the duration of the period T P as: 

 P = I P Done 
×

(
CP I P 

f P 
+ 

CP I ′ P 
f sys 

)
(11)

here, CPI P and CP I ′ P are the average cycles per instruction during

eriod P . I P done 
represents the number of instructions executed dur-

ng period P when the core operates at a particular clock frequency

 P . 

Similarly, having the same average cycles per instruction, if the

xecution is done at the highest frequency f H , a control period of

he same walltime duration would have executed say I P Max 
instruc-

ions. 

 P = I P max 
×

(
CP I P 

f H 
+ 

CP I ′ P 
f sys 

)
(12)

Using the Eqs. (11) and (12) , the expression for I P max 
can be de-

ived as: 

 P max 
= I P Done 

×
( 

CPI P 
f P 

+ 

CPI ′ P 
f sys 

CPI P 
f H 

+ 

CPI ′ 
P 

f sys 

) 

(13)

hich can be rewritten as: 

 P max 
= I P Done 

×
( 

CP I P ( 
f H 
f P 

) + CP I ′ P ( 
f H 
f sys 

) 

C P I P + C P I ′ 
P 
( f H 

f sys 
) 

) 

(14)

Let us denote as I P NotDone 
= I P max 

− I P Done 
the number of instruc-

ions that turned out not to be executed or done in the last con-

rol period due to the fact that the frequency was throttled from f H 
o f P . These delayed or postponed instructions will introduce a de-

ay penalty compared to the case when all the instructions would

ave been run at f H . This number of instructions is what we call

he delayed instructions count (DIC) , which are postponed for later,

nd which will result in some performance degradation. The ex-

ression for it can be written as: 

 P NotDone 
= I P Done 

×
( ( 

CP I P ( 
f H 
f P 

) + CP I ′ P ( 
f H 
f sys 

) 

C P I P + C P I ′ 
P 
( f H 

f sys 
) 

) 

− 1 

) 

(15)

hat can be simplified to: 

 P NotDone 
= I P Done 

×
( 

CP I P ( 
f H 
f P 

− 1) 

C P I P + C P I ′ 
P 
( f H 

f sys 
) 

) 

(16)

Using again an expression similar to that from Eq. (10) , we can

alculate the extra time it would take to run I P NotDone 
instructions at

he highest clock frequency f H . Let us refer to that as T P delay 
, which

s essentially the penalty incurred in control period P because of

unning at a lower frequency, f P : 

 P delay 
= I P NotDone 

×
(

CP I P 
f H 

+ 

CP I ′ P 
f sys 

)

= 

( 

I P Done 
×

( 

CP I P ( 
f H 
f P 

− 1) 

C P I P + C P I ′ 
P 
( f H 

f sys 
) 

) ) 

×
(

CP I P 
f H 

+ 

CP I ′ P 
f sys 

)
(17)

hich can be reduced to: 

 P delay 
= I P Done 

×
( 

CP I P ( 
f H 
f P 

− 1) 

f H 

) 

(18)

Finally, the total performance loss (PL) that is incurred over all

he control periods, is calculated as the following summation: 

 L = 

N ∑ 

P=1 

T P delay 

T 
= 

N ∑ 

P=1 

I P Done 
×

(
CPI P ( 

f H 
f P 

−1) 

f H 

)
T 

(19)
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Fig. 3. Example utilized to illustrate the estimation of total performance loss (PL) so far, up to and including the currently completed control period and just before the start 

of a new control period for a given core. 
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Fig. 4. Block diagram of the proposed DVFS based dynamic energy management 

(DEM) scheme as implemented inside our custom Sniper simulator. 
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here N is the total number of periods and T is the duration or

ength of the control period. 

Knowing previously selected frequencies for each of the cores

f the CMP that were used in the last control period, together with

he statistics about how many instructions have been executed by

ach core and what was the average CPI in the last control period

in system simulators as well as on current operating systems run-

ing on real multicore hardware, these data are readily available),

e use Eq. (19) to estimate how much aggregated extra delay we

ave incurred up to the current control period. This is illustrated

or a very simple example in Fig. 3 , where we can see for example

hat at the end of the first control period the performance loss (PL)

s zero because the execution during the first control period was

one at the highest clock frequency f 1 = 2 GHz. However, at the

nd of the second control period, we have incurred a performance

oss of 10 0 0/20 0 0 0 because a lower frequency of f 2 = 1 . 5 GHz was

sed (see second row in Fig. 3 ), and so on. 

.2. Block diagram and pseudocode of proposed algorithm 

The expression in Eq. (19) gives us a good measure of the loss

uffered in the control period that just finished execution. How-

ver, we would like to use it to estimate the performance loss dur-

ng the next, incoming control period and based on that to be able

o make an informed decision about what voltage-frequency (VF)

air to use that gives us maximum energy reduction within the

imit of allowable performance degradation. The issue now how-

ver is that we need a way to predict what the actual workload

ill be in the next control period. In other words, at the end of the

ontrol period index P , we need a predictor for instruction counts

nd CPI of the next control period, that of index P + 1 . To do that

e use a Kalman filtering based approach. We use a Kalman filter-

ng based approach because we found it to be the best compromise

etween complexity of implementation, efficiency, and accuracy of

rediction while considering a history of w past control periods. 

The block diagram from Fig. 4 is essentially implemented as a

ontrol algorithm inside our customized Sniper based CMP system

imulation framework. During a regular simulation of a given ap-

lication or benchmark, for a given architecture of the CMP, infor-

ation about the activity counters (i.e., number of instructions ex-

cuted by each core and CPI) is fed to our algorithm. Our algorithm

s dynamic , i.e., applied directly at runtime, and does not need any

tatic application analysis or profiling that would be done in ad-

ance in order to identify improvement possibilities. The execution

f the given application is done as a series of control periods. The
nformation collected from the Sniper simulator at the end of each

ontrol period is recorded for a moving window of w past periods

nd is utilized to make predictions about the next control periods’

nstruction counts and CPI. The prediction is done with a Kalman

lter based predictor as shown in Fig. 4 . 

The predictions are then used inside the algorithm for estimat-

ng the performance loss using Eq. (19) and for deciding the VF

airs for all cores for the next control period. The VF pairs are

elected to maximize energy savings but without violation of the

erformance loss constraint, which is the user specified. We as-

ume that, based on the criticality of the application, the user de-

nes a tolerable performance loss ratio. The pseudocode of this

ontrol algorithm is shown in Algorithm 1 listing. The algorithm

orks with a list of VF pairs, out of which new VF pairs are se-

ected for cores if that results into energy reduction without vi-

lating the performance degradation ratio threshold specified by

he user. For each period, using the predicted instruction counts

nd cycles per instruction estimated by Kalman predictor for the

ext control period, the algorithm finds the lowest frequency to
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Algorithm 1 Dynamic Energy Management (DEM) Under Perfor- 

mance Constraints. 

1: Input : 

2: α: acceptable performance loss ratio threshold; I P done 
, CP I P for 

just ended control period 

3: Output : 

4: (V P+1 , f P+1 ) VF pairs for all cores for next control period 

5: Definitions: 

6: T duration of each control period 

7: I (P+1) done 
, CP I P+1 predicted with Kalman filter predictor 

8: F reqList: list of available frequencies sorted from low to high 

( f H ) 
9: T delay = 0 

10: T re f = 0 

11: if end of control˜period index P then 

12: for each core in CMP do 

13: 

14: T re f + = T 

15: T delay + = 

I P done 
×( 

f H 
f P 

−1) ×CPI P 

f H 
16: F req _ set = F alse 

17: 

18: for F req in F reqList do 

19: 

20: T re f next 
= T re f + T 

21: 

22: P redT delay = T delay + 

23: 
I (P+1) done 

×( 
f H 

F req 
−1) ×CPI P+1 

f H 
24: 

25: P redPer f Loss P+1 = P redT delay /T re f next 

26: 

27: if P redPer f Loss P+1 < α then 

28: f P+1 = F req 

29: F req _ set = T rue 

30: end if 

31: end for 

32: if F req _ set = F alse then 

33: f P+1 = f H 
34: end if 

35: end for 

36: end if 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Architectural configuration parameters. 

Parameter Value 

Technology node 45 nm 

Core Intel X86 

Core CPU model Out of order (Detailed CPU) 

Frequencies 2 GHz downto 1 GHz, with 100 MHz step 

VDDs f ≥ 1.8 G : 1.2 V , 1.8 G > f ≥ 1.5 G : 1.1 V , 1.5 G > f ≥ 1 G : 1 V 

Transition latency 20 0 0 ns 

Branch predictor 2 bit counter 

Reorder buffer 80-entries 

L1ICache/1core 32KB 

L1DCache/1core 64KB 

L2/1core 256KB 

L3/4cores 8MB 

Network 2D regular mesh, 1 router per core 

Link bandwidth 64 bits 

Fig. 5. Plots that show the comparison between the predicted values of the CPI 

and the instruction count for the next control period and the actual values that 

occurred and were observed at the end of the next control period. These traces are 

for a sample core (out of 64 cores) during the execution of radiosity benchmark. 
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save the maximum possible energy that satisfies the performance

constraints. 

5. Simulation results 

We implemented the proposed dynamic energy management

(DEM) scheme from Fig. 4 inside the Sniper based CMP system

simulation framework [29] , which is integrated with the McPAT

power calculator that models all three main components of power,

including dynamic, short-circuit, and leakage power [30] . We

conducted extensive simulations on several Parsec and Splash2x

benchmarks [31] to investigate the performance of the proposed

algorithm. In our simulations, we used two different network-on-

chip (NoC) based CMP architectures composed of 16 (4 ×4) cores

and 64 (8 ×8) cores, respectively. Each of these architectures uses

a regular mesh NoC topology. The default architectural configura-

tion parameters utilized in our custom Sniper based simulations

are listed in Table 1 . 

5.1. Accuracy of the Kalman filter predictor 

As discussed earlier in the paper, our primary prediction tech-

nique uses Kalman filtering. This is used to predict the instruction
ount and the average CPI in the next control period for each core.

ased on our simulations, we found empirically that a history win-

ow of 20 periods and values of 1, 1, 0.5, and 0.5 for A, H, Q and

 filter parameters provided consistently very accurate predictions.

lso it is assumed that there is no control input exists and B is set

o 0. Therefore, we use these parameter values for all our simula-

ions unless stated otherwise. For example, in Fig. 5 , we show the

redictions of both the CPI and the instruction count for a sample

ore while running the radiosity benchmark with 64 threads on a

4 core CMP architecture. The predicted values follow very closely

he actual observed values, which turn out to occur at the end of

he next control period. Therefore, we conclude that the Kalman

ltering based prediction is very effective and computationally ef-

cient. It serves well for our purpose, as it will be made clear in

he next set of simulation results. 

.2. Overhead due to Kalman filters 

As mentioned earlier, the proposed dynamic energy manage-

ent (DEM) uses a Kalman filter per core for scalability but most

mportantly for accuracy because we are interested in doing DVFS

t per core level rather than for the whole processor. The Kalman
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Fig. 6. Simulation results for a sample run of the barnes benchmark. The x axis represents the index of the control periods. Note that when the frequency is higher, the total 

execution time, measured as walltime , is shorter and therefore the total number of control periods is smaller. 

fi  

s  

W  

c  

t  

o  

t  

b  

h

lter is implemented as a C++ routine, which is integrated in-

ide the Sniper system simulator that we use for our simulations.

henever the Kalman filter needs to be executed, this routine is

alled and it executes very fast. Its runtime is very small at less

han 0.05% of the duration of a control period. This performance
verhead is included in the measurement of the total execution

ime for a given benchmark. Thus, the performance for a given

enchmark when the proposed DEM is used includes also the over-

ead due to the execution of the Kalman filter routines. 
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Fig. 7. Energy reduction percentages. (a) 16 core architecture with 4 × 4 mesh NoC. (b) 64 core architecture with 8 × 8 mesh NoC. 
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5.3. Dynamic energy management 

In the next set of simulation experiments, we investigate the

performance of the proposed algorithm for several different val-

ues of the performance loss (PL) constraint or threshold. Recall

that this constraint is set by the user who has the best knowledge

about what is the acceptable performance degradation for a given

application. We assume that the user sets this constraint based on

her knowledge of the criticality of the application at hand. The

higher the criticality, the lower the PL should be selected. We con-

sidered six different PL values including 5%, 10%, 20%, 30%, 40% and

50%. For example, a value of P L = 5% means that the user wants

the proposed algorithm to try to reduce energy consumption as

much as possible but without incurring a performance degradation

of more than 5%. 

Therefore, for each such PL value, we run the proposed DVFS

based dynamic energy management (DEM) algorithm to find out

what is the maximum achievable energy reduction under the spec-

ified performance degradation constraint. The results reported here

focus on the so called region of interest (ROI) during the execution

of a given benchmark. During each simulation, the custom Sniper

simulator is stopped periodically after a constant amount of time

(i.e., control period) and the proposed DEM algorithm described in

Fig. 4 is called to find the best VF pairs for all cores for the next

control period. In our simulations the control period is set to 1 ms,
ut it can be set to other values as well. During each such stop,

he DEM algorithm estimates the delayed instructions count (DIC)

n current control period and predicts the behaviour of the appli-

ation on each core for the next period using Kalman predictor.

hen, it tries to control the delay incurred due to the delayed in-

tructions by selecting the lowest possible frequency, which still

atisfies the acceptable performance penalty threshold. 

The plots in Fig. 6 show simulation data collected during a sam-

le run of the barnes benchmark on a 64 core architecture for the

our different PL constraints. The plot in Fig. 6 a shows the num-

er of instructions executed during each control period on one of

he 64 cores of the CMP architecture. Please contrast that with the

redicted number of instructions that are delayed for later execu-

ion shown in Fig. 6 b. This is the number of instructions that could

ave been executed in addition during the just completed control

eriod, if the highest frequency had been used. In other words, be-

ause the execution in the just completed control period was done

t a lower frequency (as dictated by the DVFS algorithm, in order

o reduce energy consumption), these instructions are delayed and

hus their execution will be “rolled over” during the incoming con-

rol periods. This plot is as we expected; the larger the threshold

or performance loss (PL), the larger the number of instructions

hat are not completed and postponed for later. This in turn will

esult in longer overall execution time for a given benchmark. 
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Fig. 8. Performance loss percentages. (a) 16 core architecture with 4x4 mesh NoC. (b) 64 core architecture with 8x8 mesh NoC. 
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The way frequency was varied is shown in Fig. 6 c while the

alculated performance loss at the end of each control period is

hown in Fig. 6 d. We can see that for a tight PL threshold like

%, the core frequency is higher than when the threshold is large.

n other words, for example, when the PL threshold is relaxed to

ay 50%, the algorithm pushes the frequency way down in order

o save as much energy as possible while trying to keep the esti-

ated performance loss within the limit of 50%, as seen in the top

urve of the plot in Fig. 6 d. Similar plots can be collected for any of

he 64 cores of the CMP architecture and for any of the simulated

enchmarks. They are not reported here due to lack of space. Note-

orthy, we observe that sometimes the estimated performance

oss overshoots as shown by the curve corresponding to the PL

hreshold of 50% in Fig. 6 d. This happens when the frequency for

he just completed control period was selected too low. As a result

he performance degradation violates the desired threshold for a

hort period of time. This is a direct result of the prediction error

hat was experienced at the end of the previous control periods.

e do not have currently a way to eliminate these “artifacts”, un-

ess we wanted to become over-conservative in the way we allow

he proposed DVFS algorithm to throttle core frequencies. There-

ore, we consider these short lived PL threshold hikes as accept-

ble. 
The energy reduction for all the benchmarks that we investi-

ated is shown in Fig. 7 for two different CMP architectures. The y

xis of these plots shows normalized values for simplicity and clar-

ty. For example, a value of 0.2 on the y axis of Fig. 7 a means a 20%

nergy reduction. We can see that energy savings are consistent

cross the board and, as expected, the savings are bigger when the

erformance loss constraint is more relaxed. Note that for some

enchmarks the energy savings can be as high as 60% for either

f the two CMP architectures. The performance loss for all bench-

arks and for both CMP architectures is shown in Fig. 8 . Please

ote that the plots in this figure actual performance loss as cal-

ulated and reported by the Sniper tool simulator, and it includes

lso the overhead of executing the Kalman filter routines. Again,

he y axis shows normalized values similar to the plots in Fig. 7 .

ote that for each of the four different values for the PL thresh-

ld, the actual performance loss calculated at the end of the ex-

cution of each benchmarks is kept within limits reasonably well.

ome benchmarks experience slightly larger performance degrada-

ion and that is due to the “artifacts” discussed earlier. 

Finally, we also show in Fig. 9 the change in energy delay area

roduct (EDAP). In all cases the area is actually the same and does

ot really affect these plots. We can see that in the majority of the

ases the EDAP is improved. In some difficult instances that is not
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Fig. 9. Energy Delay Area Product (EDAP) percentages. (a) 16 core architecture with 4 × 4 mesh NoC. (b) 64 core architecture with 8 × 8 mesh NoC. 
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the case. The reason for that is because we apply the proposed al-

gorithm and report results only for the so called region of interest

(ROI) of a given benchmark and not for the whole duration of exe-

cution. These benchmarks are created such that during the ROI all

cores are fully utilized and thus usually there is little room for im-

proving performance via frequency theottling when everything is

busy almost all the time. In experimental setups like this, it is un-

likely that both energy consumption and performance can be im-

proved because all cores are working all the time. This is not so in

some previous works, which reported wishfull energy consump-

tion reduction and performance improvement at the same time.

We suspect that is possible only if simulations are monitored out-

side the ROI where some of the cores do not have threads sched-

uled and thus one can find room for execution optimization. This

is something that is actually unclear in previous works, which do

not discuss whether their results are reported for ROIs or not. 

5.4. Qualitative comparison with previous work 

We do not report direct comparisons of the proposed algo-

rithm with other previously proposed dynamic energy manage-

ment (DEM) solutions. That is mainly because the implementa-

tion of previous solutions is not available. In addition, previous

solutions were for single or relatively small multicore processor
rchitectures. The number of VF settings vary widely among dif-

erent studies. Their architectures used bus based instead of NoC

ased communication in many instances. Simulations were re-

orted for different benchmarks whose parallelism or inputs are

any times not specified or discussed. Other studies reported ex-

eriments done on real hardware on processors and operating sys-

ems that we may not have in our setup. Some previous studies

eport different figures of merit such as MIPS/Watt or energy per

ser-instruction, which are different from direct execution time or

ctual power numbers. This makes replication of results very diffi-

ult if not impossible, especially if they were reported for proces-

or architectures different than ours. Moreover, we see as our main

ontribution the investigation of the tradeoff between achievable

nergy reduction for a given performance penalty threshold, inves-

igation which we do using a novel model, efficient and accurate

VFS algorithm. 

Nevertheless, we include a qualitative comparison with some

f the recently reported DVFS algorithms. Please note that this is a

ualitative comparison in order to get an idea about the capability

f the solution as a DVFS strategy. This qualitative comparison is

resented in Table 2 . We can see that the proposed DVFS algorithm

s comparable with previous solutions. However, the proposed ap-

roach uses a Kalman filter based technique that is efficient and

ccurate while the DVFS algorithm has the capability of tuning the
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Table 2 

Qualitative comparison to previous work. 

Approach Avg. energy Avg. performance 

reduction (%) degradation (%) 

Proposed (16 cores, Sniper) 15,20,26,30,33,34 5,10,20,30,40,50 

Proposed (64 cores, Sniper) 15,22,27,30,34,35 5,10,20,30,40,50 

[10] (singlecore Intel PXA27x) 34 17 

[12] (quad-core processor) 28 negligible 

[18] (dual-core AMD Opteron 2218 nodes) 20 4 

[21] (Intel i5-4590 quad-core nodes) 15 4.8 

[22] (dual-core Intel core 2 nodes) 22 20 

[15] (2 SPARC-like cores and) 12 maintains 

4 XScale-like cores) target perf. 

[23] (Superscalar processor) 20 10 

[32] (16 cores, Sniper) 5,5,5 5,10,15 

(8 cores, Sniper) 8,7.5,7 5,10,15 

(4 cores, Sniper) 2,3,4 5,10,15 

[33] (dual core processor) 41,43,45 30,59,99 
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radeoff between energy reduction and performance degradation 

s dictated by the user. 

. Conclusion 

We introduced a novel algorithm for dynamic energy manage-

ent under performance constraints in chip multi-processors. It

ses Kalman filtering to predict instruction counts and average cy-

les per instruction for the incoming control periods for all cores

f the CMP. These predictions are then used as the basis on which

oltage-frequency pairs are selected for each core by a novel dy-

amic voltage and frequency scaling algorithm whose objective is

o reduce energy consumption but without degrading performance

eyond the user set threshold. Simulations results on network-on-

hip based CMP architectures with 16 and 64 cores demonstrated

he effectiveness of the proposed algorithm on the vast majority of

he simulated benchmarks. The complete implementation of our

lgorithm and scripts for duplicating the results will be available

or download on our website. 

As future work, it would be interesting to study how the pro-

osed model and algorithm could be improved by considering also

he DRAM memory, which was shown to have a significant impact

n the overall power [21] as well as the amount of memory or I/O

ccess (during which the cores may need to stall) which needs to

e considered because the ratio of the off-chip and on-chip execu-

ion is also critical in determining the performance loss as shown

n [22] . 
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