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Abstract—In this paper, we investigate the effectiveness of using
long short-term memory (LSTM) instead of Kalman filtering to
do prediction for the purpose of constructing dynamic energy
management (DEM) algorithms in chip multi-processors (CMPs).
Either of the two prediction methods is employed to estimate the
workload in the next control period for each of the processor
cores. These estimates are then used to select voltage-frequency
(VF) pairs for each core of the CMP during the next control
period as part of a dynamic voltage and frequency scaling (DVFS)
technique. The objective of the DVFS technique is to reduce
energy consumption under performance constraints that are set
by the user. We conduct our investigation using a custom Sniper
system simulation framework. Simulation results for 16 and 64
core network-on-chip based CMP architectures and using several
benchmarks demonstrate that the LSTM is slightly better than
Kalman filtering.

Index Terms—chip multiprocessors; machine learning; LSTM;
energy minimization; DVFS; performance constraints

I. INTRODUCTION

Continuous increase in computational demands has made

chip multiprocessors (CMPs) the work horse of most comput-

ing systems including portable devices, desktop computers,

servers and datacenters. While CMPs provide great compu-

tational capabilities, they do face the problem of increased

energy consumption, especially in the case of mobile devices

and datacenters. In mobile devices, the energy consumption

affects directly the battery life. Thus, it is desirable to find

ways to save energy in order to prolong the battery life.

In datacenters or warehouse scale computers, huge amounts

of energy are consumed and this increases the electricity

and operation costs as well as the environmental pollution

[1]. For example, it has been estimated that by 2020, the

energy consumption in datacenters will increase to 140 billion

kilowatt-hours, imposing $13 billion per year in electricity

bills in American businesses as well as emitting nearly 150

million metric tons of carbon pollution annually [2]. Because

servers in these datacenters consume a significant portion of

the energy consumed, it would be beneficial on many fronts

to develop means to reduce energy consumption of CMPs that

are used in datacenter servers.

Dynamic voltage and frequency scaling (DVFS) is one of

the most popular techniques to enable optimizations of energy

consumption in processors. Energy consumption is related to

the clock frequency and the square of the voltage supply.

DVFS takes advantage of these relations to control the energy

consumption by changing dynamically the voltage-frequency

(VF) pairs of the processor as a whole or of the individual

cores. While support for DVFS at the processor level is

common place today, per-core DVFS support has only recently

started to be studied and supported by a few commercial

multicore processors. Several recent studies have shown the

benefits of per-core or per-cluser-of-cores DVFS capabilities

[3]–[5].

Under the assumption that such per-core DVFS will become

standard in future multicore processors, in this paper, we

investigate the use of long short-term memory (LSTM) based

prediction in dynamic energy management (DEM) for chip

multiprocessors. Specifically, we propose a new DVFS based

energy management algorithm. The objective of this algorithm

is to reduce energy consumption under performance con-

straints, which are set as a performance loss threshold by the

user. We test the proposed algorithm on several benchmarks

using a custom system simulation framework that uses the

Sniper tool.

The remainder of this paper is organized as follows. The

next section reviews related literature. Then, we present back-

ground information on LSTM and on a performance loss

estimation method called delayed instruction count (DIC) that

we later use in this paper. The proposed dynamic energy

management algorithm is then presented in section V. Section

VI reports simulation results and a comparison to a similar

method that uses Kalman filtering as the prediction approach.

We summarize our findings in the conclusion section VII.

II. RELATED WORK

There has been a lot of work done on methods to find

voltage-frequency (VF) pairs in algorithms that employed

DVFS for energy optimization in processors. These methods

include also machine learning. Examples of such studies
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used online learning [6], artificial neural networks [7], [8],

supervised learning [9], and reinforcement learning [10], [11].

Many of these methods were used in heuristic algorithms for

energy optimization. However, algorithms that employed game

theory, convex optimization, and combinatorial optimization

were studied too [12]–[14]. Most of these algorithms were

proposed in the context of homogeneous (i.e., formed by

identical cores) processors. However, DVFS based energy

and temperature management of heterogeneous processors has

been studied as well. For example, the study in [15] proposed

DVFS and temperature- and performance-aware task assign-

ment strategies for heterogeneous processors that maximize

energy savings, while maintaining the temperature at safe

levels.

While the above previous studies focused mainly on the

cores inside a CMP, recent studies focused also on the inter-

connects and the shared last level caches (collectively called

the uncore) to estimate the performance of the CMP and use

that in DVFS based energy optimization algorithms. For exam-

ple, the study in [16] uses the number of cache misses while

the study in [17] uses the number of non-speculative reads

that result in last-level cache misses (called leading loads),

and the study in [18] extends that for variable memory access

latencies. Similarly, the authors in [19] take into consideration

the off-chip (L2) I-cache misses and off-chip (L2) D-cache

load misses in their estimation processes. The study in [20]

proposed a DVFS policy for the uncore. The policy uses a

technique similar to the TCP Vegas congestion control and was

shown to result in significant energy savings. These methods

based on last-level cache miss cycles and on non-pipelined

stall cycles can be very sensitive to the accuracy of counting

misses and stalls. The study in [21] addressed this issue by

estimating performance losses due to frequency throttling by

using a concept called delayed instruction count (DIC). They

used the estimations in a Kalman filtering technique to predict

the workload in the next control period and to identify VF pairs

that can help reduce energy consumption without violating the

performance constraint set by the user. However, the quality

of the results in that approach depends on the actual prediction

technique that is employed. As such, here, we investigate

the use of long short-term memory (LSTM) as an alternative

prediction technique to Kalman filtering.

III. BACKGROUND ON LONG SHORT-TERM MEMORY

(LSTM) MODEL

The neural network (NN) is a popular model in machine

learning. The idea behind it is to model the human brain as

a network of neurons (nodes) to mimic the learning process

of the human brain on computers. The simplest and the most

popular neural network architecture is the feedforward neural

network. In feedforward NNs the information is transferred

through the network from one layer to the next in the forward

direction only and no cyclic connections exist between layers,

as illustrated in the simplified diagram from Fig. 1.a. NNs

can be employed to construct models that capture input-

output relationships. After typically training these models with

labeled training data (formed by known input-output pairs), the

NN model can be used to infer or predict the output for new

inputs or features.

………

Input layer Hidden layer Output layer

(a)

Output layer

………

Input layer Hidden layer

(b)

Fig. 1. Simplified diagrams of two types of neural networks (a) feedforward
neural network and (b) recurrent neural network.

Because feedforward NNs do not have any cycles or loops,

their temporal modeling capability is rather limited. Therefore,

in situations where the prediction of the output must depend

on long histories of the input feature sequence, the recurrent

neural network (RNN) can represent a better model. The RNN

model includes cyclic connections between different layers

as illustrated in the simplified diagram from Fig. 1.b. The

challenge that the RNN model faces though is that it can be

difficult to train standard RNNs to solve problems that require

learning long-term temporal dependencies. This is because

the gradient of the loss function decays exponentially with

time; this is known as the vanishing gradient problem. To

address this problem, the long short-term memory (LSTM)

was proposed [22]. The LSTM network is an RNN that uses

special units in addition to the standard units. LSTM units

include memory cells that can store information for long

periods of time in addition to special units called gates that

control the flow of information. In other words, these gates

are used to determine what to store as well as when to allow

reads, writes and erasures of information into/from cells.

Fig. 2 shows the simplified diagrams of the three different

cells used by feedforward NNs, RNNs, and LSTM networks.

It can be observed that the LSTM cell is more complex. The

added complexity is due to the input, forget and output gates

that decide whether to let new inputs in, erase the present cell

state, and let the state impact the output at a given time step.

These gates are activated through weighted signals connected

to an activation function. These weighted signals are adjusted

during the learning process. That is, the cells learn when to

allow data to enter, leave or be deleted through the iterative

process of making guesses, backpropagation of errors, and

adjustment of weights via the gradient descent technique [23].

IV. BACKGROUND ON PERFORMANCE LOSS ESTIMATION

We build our work on the performance loss estimation

technique proposed in [21]. This technique uses the new

concept of delayed instruction count (DIC). Therefore, in this

section, we briefly describe that technique.
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Fig. 2. Simplified diagrams of three different cells (a) feedforward NN cell,
(b) RNN cell, and (c) LSTM cell.

The main idea of the DVFS based energy optimization for

CMPs is to periodically assess the CMP system at runtime

and decide about how to change the voltage and frequency of

each core. The voltage and frequency are changed usually as

a pair and they take only a relatively small number of values.

Energy can be reduced by lowering voltage and frequency,

but that usually comes at the expense of some performance

degradation, especially when the application at hand is work-

load intensive during the so called region of interest (ROI)

where all cores performs useful work all the time. However,

in reality there are differences among applications, and these

differences make the performance degradation to be sensitive

to the changes in VF settings.

Having an accurate method to estimate at runtime the

performance loss during the next control period for a given

VF pair is very important to the success of implementing an

effective DVFS strategy that can maximize energy reductions

while offering guarantees that performance is not degraded

beyond a user set threshold. The study in [21] introduced such

a technique to estimate the performance loss and we use it in

this paper as well. The technique uses the concept of delayed

instructions count (DIC), which is used to derive an equation

to calculate dynamically the amount of performance loss (PL)

that would be incurred if we were to switch the current VF pair

for a given core for the next control period to a throttling VF

pair. The amount of performance loss is estimated with respect

to the reference case, which is always that of the highest

frequency. While the details of the derivation are available in

[21], here we only present the final formula that we later use

inside the DVFS based energy optimization algorithm. This

formula is given by the following expression:

PL =

N∑

P=1

TPdelay

T
=

N∑

P=1

IPDone
× (

CPIP (
fH
fP

−1)

fH
)

T
(1)

The main idea is that in each control period the technique

estimates the time, TPdelay
, that would be needed to execute

the additional number of instructions that could have been

executed if the highest clock frequency were used. In the

above equation, PL represents the total performance loss that is

incurred over all the control periods that the region of interest

(ROI) of the benchmark is split in. N is the total number of

control periods, which are indexed by the variable index P .

All control periods have a fixed duration denoted as T . CPIP
is the average number of CPU cycles per instruction when

the CPU is not stalled and does useful work during period

P . IPdone
represents the number of instructions executed

during period P when the core operates at a particular clock

frequency fP . fH is the highest frequency among all supported

VF pairs.

V. USING LSTM PREDICTION FOR DYNAMIC ENERGY

MANAGEMENT

Dynamic energy management is achieved by continuously

monitoring the CMP and periodically changing the VF pairs

for each core such that energy consumption is reduced while

performance is not degraded or degraded within the limit set

by the user. By default, all the cores in the CMP are assumed to

operate at the highest frequency to get the best performance.

Then, during periods when the workload is low, frequency

can be throttled to save energy with little or no impact on

performance. The method discussed in the previous section

provides us with equation (1) that can be used to estimate

the performance loss suffered in the control period that just

finished execution. However, to make an informed decision

about what VF pair to use during the next incoming control

period, we need to extend equation (1) to be able to estimate

the performance loss during the next period. That will help us

to identify VF pairs for the next control period. Thus, for a

given performance constraint, if we could predict the incoming

workload for each core of the CMP, we would be able to better

guess the best sets of VF pairs for the all the cores that can

reduce energy consumption without violating the performance

constraint.

The method described in [21] proposed a Kalman filtering

approach to predict the workload in the next control period.

Our objective in this paper is to investigate other prediction

approaches. Specifically, we are interested in the use of the

LSTM model due to its ability to capture history in time series.

The block diagram of the dynamic energy management

(DEM) scheme investigated in this paper is shown in Fig.
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Fig. 3. Block diagram of the DVFS based dynamic energy management
scheme as implemented inside our custom Sniper simulator.

3. The scheme is implemented as a control loop inside our

customized Sniper simulation framework. For each application

or benchmark, the system simulator is halted periodically.

At each stop, statistics about the performance counters (i.e.,

number of instructions executed by each core and CPI values)

are collected and fed into the algorithm. The algorithm records

the last statistics for a moving window of w past control

periods. It sends this information to the LSTM predictor that

predicts the workload for the next control period based on the

characteristics of the recorded past.

The LSTM model itself is rather simple. It is constructed

with just one hidden layer of 4 LSTM blocks or neurons and

the sigmoid activation function is used for each block. To

use the predictor, the LSTM model is first trained. Training

data include CPI and instruction count and are collected and

organized as input features for a moving window of w = 20
in order for the prediction to take into consideration the

past 20 data sequences. This is similar to the Kalman filter

configuration used in [21] against which we will compare

later on. The collection process is done during separate runs

of the custom Sniper simulation framework and without any

DEM algorithm. The model is trained with 20,000 samples

collected at intervals of 1 ms during simulations of only a

small number of benchmarks on architectures with 16 and 64

cores. The training samples are collected from all individual

cores in these architectures.

The DEM algorithm utilizes the predicted CPI and instruc-

tion count to estimate the performance loss using equation (1).

This estimations are then used by the heuristic that decides

the actual VF pair to be used for each core in the next control

period. These VF pairs reduce energy consumption without

degrading performance beyond the user set threshold. The

pseudocode of the heuristic is described in Fig. 4. In each

control period, P , the CPI and the instruction count for the

current period (CPIP , IP ) as well as for the next control

period (CPIP+1 , IP+1), as predicted by the LSTM predictor,

are passed to the heuristic algorithm. The algorithm estimates

the performance loss for the available frequencies listed in

ascending order and selects the lowest frequency that satisfies

the performance constraints and that lead to maximum energy

savings.

Algorithm: Dynamic Energy Management using LSTM based predictions
1: Input:
2: γ: acceptable performance loss ratio threshold; IPdone

, CPIP for just ended control period
3: Output:
4: (VP+1, fP+1) VF pairs for all cores for next control period
5: Definitions:
6: T each control period duration
7: I(P+1)done

, CPIP+1 predicted with LSTM-based predictor
8: FreqList: list of available frequencies sorted in ascending order (fH is the highest

frequency)
9: Tdelay = 0

10: Tref = 0
11: if end of control period index P then
12: for each core in CMP do
13:

14: Tref+ = T

15: Tdelay+ =
IPdone

×(
fH
fP

−1)×CPIP

fH
16: Freq_set = False
17:

18: for Freq in FreqList do
19:

20: Trefnext = Tref + T
21:

22: PredTdelay = Tdelay+

23:
I(P+1)done

×(
fH

Freq
−1)×CPIP+1

fH
24:

25: PredPerfLossP+1 = PredTdelay/Trefnext

26:

27: if PredPerfLossP+1 < γ then
28: fP+1 = Freq
29: Freq_set = True
30: end if
31: end for
32: if Freq_set = False then
33: fP+1 = fH
34: end if
35: end for
36: end if

Fig. 4. Pseudocode of the DEM algorithm. This algorithm is implemented as
a callable routine inside our modified Sniper CMP simulator. The parameter
γ is set by the user.

VI. SIMULATION RESULTS

A. Simulation Setup

For our simulation setup, we leverage existing simulations

tools. These include the Sniper system simulator [24] that is

integrated with the McPAT [25] power calculator. The machine

learning library Keras [26] is integrated in our simulation

framework and employed to build and train the LSTM pre-

dictor. To speed-up the training process, we take advantage of

the acceleration provided by a K20c Tesla GPU that we have

available on the workstation with an eight core processor that

runs Linux Ubuntu 16.04.



We conduct simulations using sixteen Parsec and Splash2x

benchmarks [27] in order to investigate the performance of

the DEM algorithm for two different CMP architectures with

16 and 64 cores. Each of these architectures uses a regular

mesh network-on-chip (NoC) for communication. It should be

noted that in our simulations we focus on the region of interest

(ROI) portion of the benchmarks; the ROI contains most of

the computations of a given benchmark. The architectural

configuration parameters utilized in our custom Sniper based

simulations are shown in Table I. The simulation framework

is implemented such that Sniper is stopped periodically (1 ms

intervals) and the algorithm from Fig. 4 is called as a routine

that finds the VF pairs for each core for the next control period.

TABLE I
ARCHITECTURAL CONFIGURATION PARAMETERS.

Parameter Value

Technology node 45nm
Core Intel X86 Gainstown
Core CPU model Out of order (Detailed CPU)
Frequencies(f) 2GHz downto 1GHz, with 100MHz step
VDDs [f>=1.8G:1.2V],[1.8G>f>=1.5G:1.1V],[1.5G>f>=1G=1V]
Cores/socket 1
Transition latency 2000 ns
Branch predictor 2 bit counter
Reorder buffer 80-entries
L1ICache/1core 32KB
L1DCache/1core 64KB
L2/1core 256KB
L3/4cores 8MB
Network 2D regular mesh, 1 router per core
Link bandwidth 64 bits

B. Results

The dynamic energy management algorithm described in

Fig. 3 is investigated for several different application crit-

icality levels, indicated as the tolerable performance loss

(PL) percentage. Specifically, we focus on six different PL

values including 5%, 10%, 20%, 30%, 40%, and 50%. For

example, if the user sets a value of PL = 20%, it means

that the objective of the DEM algorithm is to reduce the

energy consumption as much as possible without degrading

the performance with more than 20% compared to the case

when no DEM is implemented and all cores operate at the

highest clock frequency all the time.

First, we compare the DEM algorithm to the case when no

DEM algorithm is used at all. Fig. 5 and Fig. 6 show the

results for the energy reduction, the total performance degra-

dation, and the energy-delay-product (EDP) on the selected

benchmarks for 16 and 64 core CMP architectures. These

plots show that while the DEM algorithm reduces the energy

consumption, it keeps the total performance loss under the

desired threshold fairly well. The energy savings increase as

the tolerable performance degradation is increased suggesting

that the DEM algorithm provides a good mechanism to trade

off performance versus energy consumption. However, for

some benchmarks the performance degradation is slightly

larger than expected. This is due for the most part to the

prediction errors of the LSTM based predictor.

Most importantly, we note that the EDP for the majority

of the benchmarks is improved. The EDP data points are also

summarized in Table II. There are however instances where

the EDP worsened. That is because we focus only on the

ROI of the benchmarks where all the cores are fully utilized

and busy almost all the time and thus there is little or no

room to improve the performance via frequency throttling.

Essentially, it is unlikely to improve both energy consumption

and performance in such experimental setups because all cores

are working all the time. Another interesting aspect is that

beyond a PL threshold of 40% the EDP is not improved

anymore as seen in Table II. In other words, the DEM

algorithm can offer benefits only when the PL threshold set

by the user is less than 40%; beyond that, the performance

degrades too much compared with how much energy is saved.

TABLE II
AVERAGE EDP IMPROVEMENT OF DATA FROM FIG. 5.C AND FIG. 6.C

PL Avg. EDP improvement Avg. EDP improvement

16 core (%) 64 core (%)

5% 12.02 10.66
10% 12.08 9.98
20% 13.01 6.60
30% 9.36 9.14
40% 11.92 4.29
50% 1.31 -0.02
Avg. 9.95 6.77

Next, we compare the DEM algorithm against the algorithm

presented in [21], where Kalman filtering was used as the

prediction technique. Fig. 7 and Fig. 8 compare the energy

reduction, the total performance degradation, and the energy-

delay-product. The EDP data points are also summarized in

Table III. We note however that when we use the LSTM

technique the results are generally slightly and not signifi-

cantly better than the case when Kalman filtering is used for

prediction purposes.

TABLE III
AVERAGE EDP IMPROVEMENT OF DATA FROM FIG. 7.C AND FIG. 8.C

PL Avg. EDP improvement Avg. EDP improvement

16 core (%) 64 core (%)

5% -0.32 2.08
10% 0.31 -0.94
20% 1.05 1.95
30% 0.34 1.26
40% 0.10 0.14
50% 0.69 1.29
Avg. 0.36 0.96

VII. CONCLUSION

We investigated the effectiveness of using long short-term

memory (LSTM) for workload prediction in chip multi-

processors for the purpose of constructing dynamic energy

management (DEM) algorithms based on dynamic voltage and

frequency scaling under performance constraints. Simulation

results using several benchmarks were reported for 16 and

64 core network-on-chip based CMP architectures. These

results demonstrated that although the LSTM model can be

used to construct an effective DEM algorithm that provides

a good mechanism to trade off performance versus energy
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Fig. 5. Simulation results for the 16 core CMP: (a) energy reduction percentages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the case when no DEM is used.
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Fig. 6. Simulation results for the 64 core CMP: (a) energy reduction percentages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the case when no DEM is used.
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Fig. 7. Simulation results for the 16 core CMP: (a) energy reduction percentages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the DEM algorithm that uses Kalman filtering for prediction from [21].
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Fig. 8. Simulation results for the 64 core CMP: (a) energy reduction percentages, (b) performance degradation percentages, and (c) EDP improvement
percentages. Comparison is done versus the DEM algorithm that uses Kalman filtering for prediction from [21].



consumption, it is only slightly better than the Kalman filtering

approach for prediction. We suspect that the LSTM could be

improved by exploring different model topologies with more

hidden layers and units per layer; this will be investigated in

our future work.
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