
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 1

Abstract— In traditional FPGA placement methods, there is

virtually no coupling between placement and routing.
Performing simultaneous placement and detailed routing has
been shown to generate much better placement qualities, but at
the expense of significant runtime penalties [19]. We propose a
routing-aware partitioning-based placement algorithm for
FPGAs in which a looser but effective coupling between the
placement and routing stages is used. The placement engine
incorporates a more accurate FPGA delay model and employs
effective heuristics that minimize circuit delay. Delay estimations
are obtained from routing profiles of selected circuits that are
placed and routed using the timing-driven versatile place and
route (TVPR) [6][7]. As a result, the delay predictions during
placement more accurately resemble those observed after
detailed routing, which in turn leads to better delay optimization.
An efficient terminal alignment heuristic for delay minimization
is applied during placement to further optimize the delay of the
circuit. These two techniques help maintain harmony between
placement and routing delay optimization stages. Simulation
results show that the proposed partitioning-based placement
combined with more accurate delay models and the alignment
heuristic can achieve post-routing circuit delays comparable to
those obtained from TVPR while achieving a 4-fold speedup in
total placement runtime. In another experiment, we augmented
the original TVPR algorithm with the terminal alignment
heuristic, and achieved on average 5% improvement in circuit
delay with negligible runtime penalty.

Index Terms— Field programmable gate arrays (FPGA),
FPGA placement, timing-driven placement, partitioning-based
placement, delay estimation.

I. INTRODUCTION
ield Programmable Gate Arrays (FPGAs) have become
important implementation platforms because of their

flexibility and cost benefits. Changes to design can be made
late in the design cycle or even after the chip is employed in
the final consumer product, hence increasing design flexibility
and helping reduce time-to-market windows. Furthermore,
mask and fabrication costs can be amortized over a wide range
of applications that use the same FPGA architecture [22].

On the other hand, the increasing capacity and complexity
of the FPGAs resulted in new challenges for CAD developers.
Recent FPGAs can accommodate more than 16 times larger

Manuscript received October 18, 2003, revised February 16, 2004. This

work was supported in part by the Office of the Vice President for Research
and Dean of the Graduate School of the University of Minnesota, under grant
number 1546-522-5980.

The authors are with the Electrical and Computer Engineering Department,
University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
{pongstor,ababei,kia}@ece.umn.edu).

circuits than their predecessors as a result of new hierarchical
architectures, more advanced routing structures, and dedicated
on-chip circuitry (e.g., adder carry chains and multipliers).
This significant increase in size and complexity of the FPGA
chips demands much more efficient CAD tools that can
deliver shorter compilation times.

In the last decade, there have been significant
improvements in placement and routing algorithms for
standard cell and full custom designs. Traditionally, these
algorithms have been adopted for FPGAs, although they have
not been well-tuned to account for the special and limited
routing resources on FPGAs. In standard cell routing, channel
width inflation and over-the-cell routing can be employed to
resolve congestion. Neither of these techniques is available in
FPGAs where the number of wires, channel capacity, and the
internal structure of switching boxes are fixed. As a result,
placement and routing for FPGAs is more challenging.

High quality FPGA placement tools are based on Simulated
Annealing (SA), which has the ability to escape from local
optima [7][10]. This ability allows SA-based tools to explore
larger regions of the solution space. As a result, high quality
solutions are obtained, but at the expense of longer runtimes.
However, considering the exponential increase in FPGA size,
SA-based methods are becoming unsustainable. To avoid long
runtimes, partitioning-based placement approaches have been
proposed for standard cell placement [11][13]. However, its
limited search space makes the partitioning-based placement
approach inferior. It is desirable to achieve the lower
computational complexities of divide-and-conquer methods
(e.g., partitioning-based / hierarchical) while obtaining the
high quality of SA-based placement techniques. There have
been many efforts that target developing fast placement and
routing tools for FPGAs [8][9]. However, quality of
placement is often sacrificed in such methods: they can
achieve 50-fold speedup with a 33% quality degradation
penalty [9]. Other approaches have tried to parallelize the
placement or to develop a dedicated hardware implementation
[3][4]. Our goal in this paper is to develop a fast placement
method for FPGAs without losing placement quality or using
more processing power.

Traditional FPGA placement methods suffer from two
shortcomings: (a) the placement stage is not tightly coupled to
the routing phase, which could result in the routing algorithm
to partly nullify optimizations done at the placement level, and
(b) routing delay models used in FPGA tools are inherited
from their ASIC counterparts. The half perimeter bounding
box model for the delay of a net is well suited for ASIC
designs, but is not an accurate representation of the
segmented-routing architecture employed in modern FPGAs

Pongstorn Maidee, Cristinel Ababei, Kia Bazargan, Member, IEEE

Timing-driven Partitioning-based Placement for
Island Style FPGAs

F

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 2

[15][16]. This makes the router behavior harder to predict
compared to the ASIC case. Therefore, a placement algorithm,
which does not take the router behavior into account, tends
not to exploit the high performance capability of modern
FPGAs.

To deal with the first shortcoming, both placement and
routing can be concurrently considered. Such merging creates
a comprehensive view of the problem and is shown to provide
better results [14][18][19]. In these approaches, the circuit
performance is improved by up to 15%, however the runtime
is 6 to 11 times longer compared to TVPR [7].

A direct comparison between previous approaches cannot
be made due to the differences in their assumptions and
settings. However, we can depict a rough graphical
comparison in Fig. 1. Note that the comparison to [9] is in
terms of wire-length only. Also note that the authors in [4]
report the same critical delay while using wirelength
optimization for both TVPR (although in the “–fast” mode)
and their proposed parallel placement method as well as using
35% more tracks than TVPR. They achieve 980x speedup
using 2645 LUTs forming a systolic array to perform the
placement optimization. As seen in Fig. 1, the existing
placement algorithms can provide speedups at the expense of
circuit quality. In this paper, we propose a looser coupling
between placement and routing (e.g., compared to [19]) to
improve the performance in a partitioning-based formulation
and still achieve speedup. To the best of our knowledge, our
placement is the first placement that can provide both speedup
and slightly better circuit performance compared to TVPR.

Our contributions can be summarized as follows:

• Use routing profiles to derive a model for estimating the
routing resource usage as a function of net criticality and
terminal distance. The devised model has to accurately

capture routing delay and congestion of a placement and
also has to be fast to evaluate so that it can be used within
placement iterations.

• Use a net terminal alignment technique to minimize
critical path delay. The alignment is used within the
placement engine to provide a loose coupling between
placement and routing in such a way that the small
computation time of traditional design flow is maintained
while benefiting from simultaneously considering both
placement and routing.

• Determine the order in which partitions in a partitioning-
based placement algorithm are placed to minimize
placement constraints on terminals that belong to critical
nets.

The rest of this paper is organized as follows. Section II
cites some relevant works and summarizes the assumptions
used in the discussions throughout the rest of the paper. In
Section III our algorithm is presented by describing each step
in detail. Then, simulation results are presented in Section IV.
We conclude our paper and present directions for further work
in the last section.

II. PRELIMINARIES
Timing-driven placement for FPGAs can be classified into

two main categories: net-based and path-based approaches.
Net-based methods translate path criticalities (criticality is
inversely proportional to slack) to net weights and treat nets
independently. Path-based methods consider paths explicitly.
Generally, path-based approaches are more accurate but
slower than net-based approaches. Marquardt, et al., presented
TVPR [7], the timing-driven version of VPR [6], which
incorporates path-based timing analysis and connection-based
analysis within the SA algorithm. They obtained delay

% critical path delay
improvement

speedup

Nag & Rutenbar
1998 [19]

TVPR with
alignment

PPFF

Chan & Wong
2003 [3]

Sankar & Rose
1999 [9] (WL)

Mulpuri & Hauck
2001 [8]

Wrighton & DeHon
2003 [4]

15

10

5

5 30 98010 5 10 15 20 25

134

230

30

 our work

15

Fig. 1. Graphical comparison of different placement approaches proposed in the literature.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 3

improvement at the expense of increase in wiring and runtime.
In order to achieve better runtimes, weighted-edge partitioning
is the choice for the placement methodology proposed by
Hutton [17], although for hierarchical FPGA architectures.

We use a Virtex II [2] like FPGA architecture. The core of
the FPGA is composed of an array of configurable logic
blocks (CLBs), and routing resources. A CLB consists of one
or more n-input lookup tables. Each lookup table can output
either latched or unlatched signals. In this paper, we assume
that the CLB has only one 4-input lookup table. However, our
methodology can be used for FPGAs with CLBs containing

arbitrary number of inputs and any number of lookup tables.
In such a case, technology mapping is used to group several
lookup tables into a single CLB, which in turn is treated as a
single cell at the placement level. Throughout the paper, we
interchangeably use “node” or “cell” to refer to CLBs. Each
CLB can access the routing segments using connection
blocks. Switch boxes are used to connect wires either back-to-
back or perpendicularly. Routing segments can have lengths
of one, two, six or extend the entire width or height of the chip
(called long wires). We also assume that wire segments are
fully buffered. Therefore, fanout has a negligible impact on
the delay of a net, especially during placement in which the
exact routing is unknown. This assumption is consistent with
modern FPGAs in which buffers are used to improve the net
delay and make it more predictable [2][20]. As a result, we
can treat a multi-terminal net as a set of two- terminal nets,
each connecting the source to a sink. This means that we
assume that all edges are independently routed and therefore,
their delays are independent.

III. PPFF: PARTITIONING-BASED PLACEMENT FOR FPGAS
In this section we describe our partitioning-based placement

framework, which simultaneously performs delay and
congestion minimization. We adopted the net-based approach
in which the path delay is taken into account by translating a
path’s slack to individual net criticalities (the criticality of a
net is inversely proportional to the smallest slack of the paths
that pass through the net).

The overall flow of our PPFF algorithm is shown in Fig. 2.
We recursively partition the design and place it hierarchically
during global placement. Because after placement there can be
cell overlaps, we perform the legalization and cell distribution
using a greedy method, followed by a post-processing
detailed-placement step that employs low temperature SA.

Placement is done by recursively partitioning the circuit
using the hMetis partitioning tool [1]. During partitioning we
maintain a tight connection between the circuit graph and the
placement (as coordinates of all cells on the FPGA fabric).
This connection is key to the success of applying the net
terminal alignment heuristic (defined in Subsection III.A) as
well as to the accuracy of delay computations. Recursive
partitioning is done until each leaf in the hierarchical partition
tree contains less than four cells. All edges in the circuit graph
to be partitioned by hMetis are weighted. The weights
represent timing criticality of the edges calculated using the
timing slack values:

slack
slacky criticalit

edgesall

i
i max

−= 1 (1)

where max slack is positive.
We also define criticality of a node as the maximum

criticality of its incident edges. Using timing criticality as edge
weight discourages the partitioning engine from cutting edges
with high criticalities. Therefore, critical nets will be kept
short and the circuit will have a smaller delay. The process of
delay assignment and slack/criticality update is performed at
every partitioning level. Hence, timing criticalities will be
more accurate and a better, tighter connection between timing-
driven partitioning and placement is developed and
maintained. A number of novel ideas used in our recursive
partitioning steps are listed below:

• Net terminal alignment (presented in Subsection A).
• Partitioning order (covered in Subsection C).
• Net delay and timing criticality modeling based on

Recursively partition the current netlist
and its associated placement region

Overlap removal

Cell distribution

Low temperature
Simulated Annealing

All regions
are small ?

NO
Go to the next
hierarchy level

Embed the given circuit into
an appropriate size FPGA

Incorporated :
1. Net terminal alignment
2. Delay information
3. Partition ordering

Legalization

Post-processing congestion
minimization step

Fig. 2. Schematic diagram of proposed algorithm.

CLB
A B

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

S S

S

S

C

A

B

C

1 unit
distance

Fig. 3. Illustration of the terminal alignment of a generic two-terminal net.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 4

routing analysis (discussed in Subsection E).
In the following subsections we will discuss more details of

each of these features.

A. Net terminal alignment for delay minimization
FPGA placement tools widely use wire length as the guide

for minimizing circuit delay. However, wire length, calculated
as the net bounding box, does not accurately capture the delay
of a net because of the segmented routing architecture of
modern FPGAs. It has been shown that the number of
switches along a net could be as important as the Manhattan
distance between its terminals, sometimes even dominating
the distance [5][14]. Fig. 3 illustrates this point. Connections
A, B and C have the same wire length, but exhibit different
delays due to the difference in the number of switches they
used. It can be observed that net C has the smallest delay.

At the placement level, we cannot predict – with 100%
accuracy – the number of switches that the router will use to
route a net. However, given the same placement as the
terminals of nets A and B, the router is more likely to use
fewer switches to route the more timing critical net between
the two. Furthermore, we can certainly say that at least one
switch is needed to connect the horizontal segments of the
route to the vertical ones. On the other hand, the placement of
the terminals of net C provides the opportunity for the router
to avoid using any switches at all.

Terminals of a net are aligned if they are placed in the same
row or column of the CLB array. For example, terminals of
net C in Fig. 3, are aligned. Terminal alignment provides a
loose coupling between placement and routing, by allowing
the router to use fewer switches on timing critical nets. Note
that wire length minimization will not distinguish between
nets A, B and C, as they all have the same half-perimeter
bounding box value. To study the effect of alignment on
circuit timing and routability, we integrate the alignment
technique into TVPR. We can define the alignment cost of a
vertex as the weighted sum of square of its edge criticalities.

⎩
⎨
⎧ =−−

=

⋅= ∑

.otherwiseif,1
0))((if,0

)(where,

))(()()(2

y
j

y
i

x
j

x
i

ii

vvvv
e

vycriticalitevcostalignment_

δ

δ
 (2)

Note that we square the criticality to give high priority to
cells with higher criticalities. An example of the alignment
cost computation is shown in Fig. 4.

The auto-normalization cost function used in TVPR is

1w0where,

timingCost
 timingCost∆w

BB_cost
∆BB_cost)w(1cost

t

tt

≤≤

⋅+⋅−= (3)

Where BB_cost is the wirelength bounding box cost. We

add the alignment cost to the cost function, while preserving
the auto-normalization property:

1010

1

≤+≤≤≤

⋅+

⋅+⋅−−=

altalt

al

talt

wwandwwwhere

w

wwwt

,,
 alignmentCost
 ∆alignmentCost

timingCost
timingCost∆

BB_cost
∆BB_cost)(cos

 (4)

Even though we do not modify the random moves in TVPR

to directly enforce alignment, we use wal to favor moves that
improve alignment. The effect of alignment on circuit delay
was studied by varying a combination of cost function weights
(see Equation (4)). The experiment was performed on the set
of benchmark circuits introduced in Section V. TVPR’s
default weights for timing and bounding box costs are 0.5.
The improvement over the original TVPR is shown in Fig. 5.
The improvement on combinational circuits is larger than that
on sequential circuits. The peak improvement is about 4.6%
when timing, alignment and bounding box weights are 0.3, 0.2
and 0.5, respectively. Notice that the improvement decreases
with wal. This is because the alignment technique is not
distance aware. In other words, if two terminals are aligned
horizontally or vertically, their separate distance is irrelevant
as seen by (2). Therefore, to successfully apply alignment,
timing optimization based on distance should also be
performed so that a balance is struck between alignment,
timing criticality and routability.

B. Alignment implementation in partitioning-based
placement
In this subsection, we describe how we integrated the net

terminal alignment technique into the partitioning-based
placement. This is key to obtaining the most out of the
alignment technique while maintaining the time complexity of

A

0.9

0.
6

0.7

0.8

Fig. 4. The example of alignment cost computation. Alignment cost at node A =
1٠0.7+1٠0.8+0٠0.6+1٠0.9.

Fig. 5. Effects of alignment on circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 5

the partitioning-based placement. Partitioning-based
placement recursively partitions a circuit in a breath-first
manner. Each sub-circuit corresponds to one node in a
recursion tree. All nodes with the same distance from the root
node constitute one level in a partitioning-based placement.
The alignment will be performed among the terminals within
the same level only. Therefore, alignment also proceeds in a
level-by-level basis.

We mentioned in Section III.A that terminal alignment
allows the router to minimize the delay of the aligned net.
However, excessive alignment can negatively affect
congestion. Therefore, we will align only the most critical
connections (i.e., the connections with criticality values abave
a specified threshold).

We define anchors as vertices of regions already
partitioned at the current partitioning level. These vertices
serve as references for other terminals that are going to be
partitioned. Consider nodes X and Y of a two-terminal net
shown in Fig. 6. Assume that node Y is an anchor. If node X is
about to be placed in one of four partitions, A, B, C and D,
placing X in region A or B can provide the alignment for the
connection (X,Y). We would like to note that terminal
alignment behaves differently from a wire length
minimization heuristic or a traditional “terminal propagation”
method used in most partitioning-based placement algorithms.

If terminal propagation were used, a dummy node would be
added to partition B and X is likely to be placed in B because
X-Y is a critical connection. However, placing X in A or B
does not necessarily make any difference in the delay of the
connection (X,Y) due to the segmented routing architecture of
the FPGA. Furthermore, if we used the wirelength metric,
placing X in A or C would not make any difference, while it
does for alignment.

As mentioned above, alignment does not distinguish

between A and B (or C and D). This means that the alignment
of a net can only be done in one cut direction. For example, in
Fig. 6, it only makes sense to consider alignment of X-Y when
partitioning along a horizontal cut. We should also note that

terminal alignment and terminal propagation are orthogonal
techniques. For example, in Fig. 6, terminal propagation can
be used in conjunction with terminal alignment. For a vertical
cut, terminal propagation gets activated for net (X,Y), whereas
terminal alignment only gets activated for this net when a
horizontal cut is being made.

In a region to be partitioned into four regions, we perform
two consecutive bi-partitionings, as opposed to one
quadrisection. The reason is that by doing bi-partitioning, we
can decide which direction (horizontal or vertical) to cut first
to give priority to critical terminals. Let us call the left and
right (top and bottom) borders of a partition region the vertical
(horizontal) borders. Ideally, we would like to let the most

critical net gain the most from alignment. Therefore, we
perform the horizontal cut first if the maximum criticality
crossing vertical borders is higher than that of the horizontal
borders and do vertical cut otherwise. For example, in Fig. 7,
the largest timing criticality among nets crossing the vertical
borders of the placement region (i.e., max{0.8,0.9}=0.9) is
larger than that of nets crossing the horizontal borders (i.e.,
max{0.85,0.4}=0.85). Therefore, the first bi-partitioning is a
horizontally cut and the next two bi-partitionings in the newly
created regions have to be done vertically.

The alignment implementation is summarized in Fig. 8,
which shows how critical nodes are aligned with nodes placed
in regions that are already partitioned. For demonstration
purposes, we assume that all regions to the top and to the left
of the region under partitioning in Fig. 8-a have already been
partitioned. Among the six anchors, only two have critical
connections to terminals in the region under consideration.
Assume that the vertical cut will be carried out. Therefore,
only the critical nodes that have vertical connections to
anchors will be aligned as shown in Fig. 8-b. These nodes will
be fixed inside the partition that aligns them, and the rest of
the nodes are assigned to either partition by hMetis. The fixed
nodes can affect how other nodes will be divided into the
partitions, because of their connectivity to them.

Note that the partitioning-based placement imposes the
placement restriction for a sub-circuit (i.e., the cell cannot
migrate to other sub-circuits). Therefore, it is easy to show
that if the terminals are not aligned at a level, they cannot be
aligned at lower levels.

1st

2nd crit = 0.8

crit = 0.4

crit = 0.85

crit = 0.9

Fig. 7. Deciding the cut direction.

Regions
already
placed
at this
level

Free

Critical anchor
Non-critical anchor
Affected by anchor

Regions
already
placed
at this
level

FreeFree

Critical anchorCritical anchor
Non-critical anchorNon-critical anchor
Affected by anchorAffected by anchor

Regions
already
placed
at this
level

Free

Critical anchor
Non-critical anchor
Fixed

Regions
already
placed
at this
level

FreeFree

Critical anchorCritical anchor
Non-critical anchorNon-critical anchor
FixedFixed

(a) (b)
 Fig. 8. Net terminal alignment step during bi-partitioning.

YX
A B

CD

Fig. 6. Illustration of the terminal alignment of a generic two-terminal net.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 6

C. Partition Ordering
After a region is partitioned, its nodes serve as anchors to

other nodes in regions to be partitioned. To demonstrate the
effect of partitioning order, we assume that partitioning is
done from top to bottom and left to right as shown in Fig. 9.
The regions in the third and forth columns have anchors in
only the horizontal direction, while the regions in the second
column have anchors in both directions. It can be seen that if
we change the order in which regions are partitioned, the
anchors available to a particular region would be different.
We refer to this effect as region dependency. It can be
observed that region 1 has the maximum flexibility in
assigning nodes to its sub-partitions. Conversely, the region in
the bottom-right corner of the chip will have the maximum
number of alignment constraints.

We define dependency between two regions as follows:
regions a and b are “directly dependent” if they are in the

same row or column, and there is at least one critical edge
connecting terminals of the two regions. When two regions
are directly dependent, partitioning of one of them into four
regions creates anchors for the other. Examples of dependent
regions in Fig. 11-a are {a,b}, {a,d} and {c,f}, but not for
example {p,f}. We also define “transfer dependency” as a
transitive dependency between two regions. When regions X
and Y have transfer dependency, there is a chain of direct
dependent regions starting with X and ending in Y. For
example, region a in Fig. 11-a has a length-4 transfer
dependency with region g through a,b,c,f,g or a,d,c,h,g. We
can consider the direct dependency as a transfer dependency
of length one. Intuitively, the influence of a dependency
decreases as its length increases. We have found that
considering only dependencies of length one (direct
dependency) provides good placement quality / runtime
tradeoff. For direct dependency, we can solve the partition
ordering problem in linear time.

For a set of regions, we can construct the corresponding
undirected dependency graph G(V,E,W), where:
• V is the set of regions.
• Eba ∈),(iff a and b are directly dependent regions.
• wab, the weight of edge (a,b), defined as the summation of

the criticality of all critical connections between a and b.
A connection is critical if its timing criticality is above a
user-defined value.

Finding the best partitioning order in terms of dependency
can be translated to a linear placement problem with minimum
sum of incoming edge weights as follows.

Minimum incoming weight linear placement (MIWLP):
For a given weighted-edge graph G(V,E,W), find a labeling
function L:V→N, that determines the order in which regions
are partitioned, such that

 EvuandVvuwherew
vLuL

uvVv
∈∈∑

<
∈

),(,,maxmin
)()(

 (5)

Note that wuv = wvu . We can define C(v) and get the cost
function

,)(maxmin
)()(

∑
<

∈
=

vLuL
uvVv

wvC (6)

This problem can be solved optimally using a greedy
algorithm that iteratively labels one node at a time. We label
nodes from last to first. Let S be the set of unlabelled nodes
and S’ be the set of nodes that have been labeled. Since any
node in S will have a smaller label than any node in S’, (6) can
be rewritten as:

Svforwvc
EvuSuall

uv ′∈= ∑
∈∈

,)(
),(,

 (7)

Note that initially S’ = Φ. Let us define Si and Si’ as the set
of non-labeled and labeled nodes at stage i, i.e. when only |V| -
i nodes have been ordered. Note that S0 and S0’ are equivalent
to S and S’, respectively. Therefore, the cost of node v at stage
i can be expressed as:

∑
∈∈

=
EvuSuall

uv
i wvc

),(,
)((8)

The proposed algorithm for solving MIWLP problem is as
follows.

Algorithm MIWLP

||, '
|||| VSS vv =Φ=

For i = |V| down to 1 // NOTE the reverse order
a. Compute Ci(v) for each v ∈ Si.
b. b. Select node vi in Si such that Ci(vi) is smallest.
c. Label vi as i, }{\},{ 11 iiiiii vSSvSS =∪′′=′ −−

 .

Lemma: If L(v)=i, then Ck(v) = Ci(v), ∀k<i. In other words,

the cost of a node will not change after it is labeled.
Proof: We can divide the edges incident to v into two

groups: those connecting v to nodes with smaller labels
(“incoming” edges), and those connecting v to nodes with
larger labels (“outgoing” edges). The latter edges do not count
in either Ck(v) or Ci(v). On the other hand, the contribution of
an edge (u,v) for L(u)<L(v) is independent of the actual value

11

22

33

44

55

66
to be partitioned placement regions
partitioned placement regions

To be horizontally aligned
To be vertically aligned

Fig. 9. Effect of a simple partitioning order.

BA

order 1 i. . . j . . . |V|

AB*
newP

*P

AP

Fig. 10. The swap used in the optimality proof of the greedy algorithm.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 7

of L(u), as long as L(u)<L(v). At stage i, we only know that
L(u) < L(v). At stage k, we might know the exact value of
L(u), but the inequality still holds, and as a result, the C value
does not change. �

A direct result of this lemma is that the final value of the
cost of a node (i.e., C1(v)) is the same as Ci(v), where L(v)=i.

Claim: The above algorithm yields the optimal solution to
MIWLP

Proof: To prove the claim, we start by showing that there
exists an optimal ordering for the problem that contains node
A=vi, the node with the smallest current cost at stage i in the
above algorithm as the i-th order.

Let P be the solution obtained by our algorithm with
objective value of X. Let P* be the optimal solution to the
problem with objective cost X*. Let i be the first position (in
reverse order, i.e., from |V| down to i) that the ordering of the
nodes differs in P and P*. That is, nodes with labels i+1, i+2,
..., |V| are the same in P and P*. Assume that node B with
L*(B)=i in P* is the first node that is different from its
corresponding node A in P, where L(A)=i (see Fig. 10). Let
the label of node A in P* be L*(A)=j.

Our goal is to convert P* to P*new by replacing B with A,
and show that the new objective function X*new is not larger
than X*. By recursively applying this transformation, we can
change P* to P and show by induction that X is also optimum.

Let us pick A out from the P* solution, and fill the gap by
decreasing (by one) the order of the nodes that have labels in
the [j+1 ,i] range. The new ordering makes a new solution
P*new. Because of the shifting of the nodes, the order of B will
be i – 1 in P*new. Then, put A at the i-th order in P*new as
shown in Fig. 10. Therefore, now L*new(A) = i and L*new (B) =
i - 1. The nodes with labels greater than i or less than j are the
same in P* and P*new.

From (8), we can infer the new cost of each node as
follows:

1. C*new(v) = C*(v) ≤ X: if L*(v) = L*new (v) > i, because the
incoming edges are the same (the order of the source nodes of
the incoming edges might have changed, but that does not
have any effect on the cost. Refer to the above lemma).

2. C*new(v) = C*(v) ≤ X: if L*(v) = L*new (v) < j, because the
incoming edges did not change.

3. C*new(v) ≤ C*(v) ≤ X: if j < L*(v) ≤ i, because by moving
A to the ith order, we might have changed some incoming
edges of v to outgoing, and hence decreased C(v).
Furthermore, we did not add any edges to the set of incoming
edges of v.

4. However, C*new(A) ≤ C*(A), because some of the nodes
with labels between j+1 and i in P* might have edges to A,
and these edges will become incoming for v in P*new.

5. From the lemma, C*i(B) = C*(B) ≤ X, and C*i
new(A) ≤

C*new (A).
6. Since the set of nodes with labels greater than i is the

same in P, P* and P*new, we have C*i(B) = C*i
new(B).

7. By definition of node A, C*i
new(A) ≤ C*i

new(B) = C*i(B) ≤
X. Therefore, C*i

new(A) ≤ X.
Therefore, X*new ≤ X*. However, since P* is an optimum

solution. Thus, X*new = X* and P*new is another optimum
solution. Since the node with labels greater than i is the same
for P and P*new, their costs are the same. If we repeat this
transformation from any node down to the node at label 1, the
above argument can be applied recursively. Finally, we will
obtain a P*new which is optimum and has the same order of the
nodes as P. Therefore, P is an optimal solution. �

A simple example of a dependency problem, its dependency
graph, and its optimal MIWLP solution is shown in Fig. 11.
Note that there may be many optimum solutions to the
problem. For example, Fig. 11-c shows the optimum solution

given by our algorithm and Fig. 11-d shows another optimum
solution with the same incoming weight at each node.

D. Overlap removal and cell distribution
The partitioning-based placement is effective only for

coarse-level netlists. In our method, the partitioning process
stops when the region size reaches a threshold (4 in our case).
Once we stop the partitioning process, the resulting placement
is illegal in two respects: First, some regions may have more
nodes than they can accommodate. This is the result of the
imperfect balancing of the partitions created by hMetis.
Second, all the cells in the coarse region (e.g., 2x2) are still at
the center of the regions and have to be placed at individual
CLB locations in the region. As shown in Fig. 2, we legalize
the placement in two steps: overlap removal and cell
distribution, both of which consider alignment during
legalization.

In the overlap removal step, we move the least critical cells
from an overcrowded coarse region to the closest region that
can accommodate the cells and also provides the best
alignment. After the overlap removal procedure is finished,

Fig. 11. The example of region dependency, its corresponding dependency
graph and its MIWLP solution. Two solutions are shown in parts (c) and (d).

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 8

every region has enough space for its nodes. However, each
region, occupying an array of CLBs (e.g., 2x2), contains a
number of cells, all of which are located at the center of the
region. We use the distribution step to distribute cells into a
CLB which best preserves their alignments. Distribution is
performed in the following steps.

1. Order placement regions according to their external
horizontal or vertical criticalities.

2. For each region, order its cells according to their external
horizontal or vertical criticalities.

3. For each cell that has criticality greater than a threshold,
find the best-aligned position and place it.

4. Randomly place the remaining cells.
Finally, the placement is refined by running TVPR’s low

temperature annealing algorithm on the whole circuit to
further minimize wire length and delay (see Fig. 2).

One may argue that overlap removal can be done entirely
by the low temperature SA, without the need for the
legalization step. However, modifying the SA algorithm to
address the overlaps would make the refinement step too
complicated, as it would have to optimize many cost functions
simultaneously. As a result, it might take much longer for the
low-temperature SA to converge to a legal solution.

E. Delay Model and Timing Criticality Update
It has been shown that the number of segments traveled by

a routed net is a more important factor in determining the
delay of the net rather than the traditional geometric distance
[5] [14]. As a result, delay estimation based only on
Manhattan distance may be optimistic or pessimistic in an
FPGA device with variable length segmented routing
architecture [15] [16]. In standard cell designs, connection
delay is closely related to its distance while its criticality is
almost irrelevant provided that there is no congested area in

the chip. Unless buffers are optimally inserted, the net delay is
strongly dependent on the fanout of the net. In contrast, for
fully-buffered FPGAs, the connection delay is largely
independent from the fanout and this allows us to easily
estimate the connection delay by the connection distance [20].
However, multi-length segmented FPGAs provide numerous
combinations of segments to complete a connection, each with

a different delay characteristic. The critical connection is
required to be routed with the delay-optimal segment
combination, while the non-critical can take longer delay
routes. Therefore, two connections with the same length but
different criticalities can have different delays.

In this section, we address two delay estimation problems:
• The first tries to understand how the routing algorithm

works so that the placement algorithm can tailor its
optimization process to conform to routing optimization
methods. Routing delay analysis is discussed in Section
E.1.

• Next, we try to develop models, which can estimate the
delay of the nets during partitioning-based placement.
Section E.2 discusses issues related to delay estimation.

E.1 TVPR Routing Delay Analysis

We first perform an analysis of the TVPR router in order to
better understand its behavior. We start with a profiling step
for the routing resource usage. We use TVPR to place and
route selected circuits and then superimpose an imaginary grid
on the FPGA fabric, which represents the partitioning cut lines
at different levels had the placement been done using a
partitioning-based method as described in Section III. Nets
crossing the grid lines corresponding to level i are counted to
get the usage profile of every type of routing resources at that
level. The characteristics of the set of circuits that we used in
our experiments are shown in Table I of Section IV.

The key point of this step is that we noticed a common
trend in the way routing resources are used by the TVPR
routing tool. A typical routing resource usage is shown in Fig.
12. We can see that long segments are used extensively for
routing nets that would be cut at higher levels of partitioning,
while double-length segments are used mostly for nets cut at
lower levels. Single-length segments are used almost
uniformly across all levels. The shape of these plots is
preserved irrespective of what placement tool is used. We
performed experiments with three different placement
engines: our placement algorithm, VPR, and random
placement.

The main conclusion of the above analysis is that routing
resource usage and therefore net delay is predictable. This
allows us to adopt a lookup-table delay estimation technique
tailored for the routing method that follows the placement.
Therefore, for a particular architecture, it is reasonable to
extract the delay from placed-and-routed circuits and store
them according to their distances and criticalities. However,
we have to discretize the criticality to reduce the table size. As
the criticality of the partitioning-based placement is not
accurate by nature (refer to Section III.E.2), dividing the
criticality into 10 regions is enough to provide good delay
estimation.

These delay lookup-tables store information about the
average delay of nets with a given criticality, which span a
given minimum length. These tables are then used inside our
partitioning-based placement algorithm for delay assignment
to nets cut at different partitioning levels.

apex2

Long

L6

L2

L1

Hierarchy level

N
o.

 o
f S

eg
 o

f E
ac

h
Ty

pe

U
se

d
at

 E
ac

h
Le

ve
l

Fig. 12. Typical routing resource usage plot.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 9

We should point out that the delay after routing is what
matters in determining the performance of a circuit. That is the
reason that we gather delay profiles after routing and try to
build a model that can capture routing behavior at placement
level. If we are successful, the optimizations done by the
placement algorithm are in line with what the routing is
inclined to do. As a result, the estimation and optimization
processes at the placement level will eventually be more
effective.

E.2 Delay Estimation During Partitioning-based
Placement

During recursive partitioning, edges are cut at different
partitioning levels. Delay assignment to cut edges is done as
follows. The minimum distance spanned by a cut net is
determined by the level at which it is cut. We estimate the
delay of a cut net based on its timing criticality at the time of
partitioning and the minimum distance it spans. Our delay
model takes into account both the number of segments used
for routing as well as the segment lengths through the use of
delay lookup-tables.

Nets cut at the first partitioning level are assigned delays
corresponding to a single-length segment which is the smallest
delay among all routing resources. During the subsequent
partitioning levels, the (x, y) coordinates of all CLBs are more
accurately known and so is the minimum length spanned by a
net. Therefore, every net will be reassigned a delay according
to its updated distance and criticality.

IV. SIMULATION RESULTS
In Section III.A, we have shown the effectiveness of

terminal alignment when incorporating it into simulated-
annealing-based placement, TVPR (as shown in Fig. 5, about
5% improvement in circuit delay compared to TVPR’s
original placement). However, when we apply this technique
to partitioning-based placement, we inevitably limit the range
of alignment to only within sub-circuits. Therefore, we could
expect to gain less improvement in this case. To verify the
effectiveness of the proposed technique, we performed three
sets of experiments and compared the results with those
obtained by using TVPR. The aim of the first experiment is to
test whether the information from the TVPR router can be fed
to a post-processing placement algorithm to improve timing
(i.e., smaller delays after routing). This set of experiments is
discussed in Subsection IV.A.

The second set of experiments compares our overall flow as
a stand-alone tool to TVPR to see if the quality of the
proposed method surpasses TVPR’s. Subsection IV.B

demonstrates the results. Finally, the third set of experiments
tries to find the contribution of each of the heuristics that we
used in our flow (i.e., alignment, delay tables and partition
ordering) to the delay improvements. Subsection IV.C covers
these experiments.

All simulations are averaged over six runs and are
performed on a Linux machine with Pentium II Xeon 450Mhz
and 2Gb memory.

A. Validating the Effectiveness of Feeding Routing Profiles
to Placement
The purpose of this set of experiments is to first validate the

usefulness of the routing profile information for the placement
tool. It also presents our method as a post processing
algorithm to improve timing. The flow of this set of
experiments is shown in Fig. 13.

We first placed each circuit of the benchmark set using the
original TVPR, then we used the TVPR router to route all
circuits (the three top boxes in Fig. 13). Delay, runtime and
channel width of each circuit after running TVPR is shown in
columns 2, 3 and 4 of Table II. The overall delay (one to last
row) is calculated as harmonic mean of all delay values while
the overall runtime and channel width (CW) are the sum of all
circuits.

Then, we extracted the delay information of each circuit as
mentioned in Section III.E.1 (the box labeled “routing
analysis” in Fig. 13). The delay information of each circuit
was then used inside our partitioning-based placement
algorithm to redo the placement of the same circuit. Finally
we route the circuit using TVPR’s router and compare its
delay to that of the original TVPR’s delay. The results are
shown in columns 5-10 of Table II. The numbers in the group
of columns labeled "% delay difference compared to TVPR”
are calculated as 100 × (our_delay – TVPR_delay) /
TVPR_delay. Negative numbers show improvement over
TVPR while positive numbers show worse results compared
to TVPR.

For each circuit placed using PPFF, we apply low
temperature simulated annealing (i.e., starting temperature is
10% of the original TVPR), with different cost function
weights (as described in Section III.A, t and a represent wt and
wal, respectively). Note that the t0.5, a0 case is equivalent to
the original TVPR. It can be observed that circuits placed by

TABLE I
STATISTICS OF BENCHMARK CIRCUITS

Circuit No. of
CLBs

No. of
I/Os

Circuit No. of

CLBs
No. of
I/Os

ex5p 1064 71 ex1010 4598 20
misex3 1397 28 tseng* 1047 174
alu4 1522 22 diffeq* 1497 103
des 1591 501 dsip* 1370 426
seq 1750 76 s298* 1931 10
apex2 1878 42 bigkey* 1707 426
spla 3690 62 elliptic* 3604 245
pdc 4575 56 s38417* 6406 135

(* denote sequential circuit)

Timing
info VPR Routing

Ckt netlist VPR Placement VPR Routing

Our placement Routing analysis

Fig. 13. Flow of the first set of experiments.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 10

our placement algorithm have comparable delays to TVPR
when timing and alignment weights are 0.4 and 0.1,
respectively. The post processing step can lead to
improvements as high as 19% (dsip circuit placed with timing
and alignment weights of 0.2 and 0.3). Although the best
weight combination for each circuit is different, from the
overall improvement, we can conclude that the best
combination is achieved when a moderate alignment weight is
used. The decrease in improvement as the alignment weight
increases, confirms the result obtained in Section III.A.

Note that we had to increase the channel width for some
circuits (e.g., ex5p, misex3, and diffeq) in order to achieve full
routability. Therefore, we require five more tracks for the
whole set of benchmark circuits which is about 1.5% increase
in total number of channels. This number of tracks is also used

for the second simulation setup.
Our experiments show that the delay results of a purely

partitioning-based placement that does not consider the
routing profiles and does not utilize low temperature
annealing legalization is about 50% worse than TVPR, while
using 34% more routing channel width. From the
experimental results shown in Table II, we can conclude that
using the routing profile tables in our partitioning-based
placement provides better coupling between placement and
routing. It confirms that the routing profile indeed helps the
placement engine generate better results that conform to
optimizations done at the routing stage.

Furthermore, Fig. 13 shows TPVR followed by our “post-
processing” step. One can run our placement algorithm after
TVPR, hence incur a 30% increase in runtime on average (in
Table II, the average runtime of PPFF is 0.28 of TVPR). If the
extra PPFF step results in deterioration of circuit delay, we
can discard changes that PPFF made to the output of TPVR.
Otherwise, we can keep the output of PPFF as the final
placement. The last row of Table II follows the same logic.
Entries in this row are the average of negative values. It shows
that by using the flow of Fig. 13, we can achieve about 2%
improvement over TVPR, with a penalty of 30% increase in
runtime.

B. Comparing PPFF and TVPR

TABLE II
COMPARISON BETWEEN OUR RESULTS OBTAINED WITH UR PPFF AND TVPR

(TVPR router analysis information used for each circuit separately)
PPFF with delay data for individual circuit TVPR

% delay difference compared to TVPR Circuit
Delay
(e-8)

Time
(sec) CW t0.5,a0 t0.4,a0.1 t0.3,a0.2 t0.2,a0.3

Time
(/TVPR) CW*

ex5p 8.02 179 22 -5.20% -4.20% -6.90% 5.10% 0.30 24
misex3 7.48 243 19 -0.50% 4.40% 1.10% 9.70% 0.28 20

alu4 6.84 265 19 3.70% -5.50% -0.80% 12.00% 0.27 19
des 9.52 372 22 13.60% 0.60% -1.60% 0.80% 0.20 22
seq 8.10 339 23 3.40% -9.90% -5.40% -1.00% 0.27 23

apex2 8.91 402 22 -3.20% -4.60% 1.30% -0.20% 0.25 22
spla 13.60 1122 30 -9.80% -5.70% -6.10% -3.70% 0.23 30
pdc 15.40 1567 32 0.00% 5.10% 15.30% 2.20% 0.23 32

ex1010 15.10 1355 22 -12.50% -1.00% 2.20% 2.20% 0.26 22
tseng 4.77 188 18 7.90% 9.70% 5.40% 9.70% 0.28 18
diffeq 5.35 288 16 0.60% 6.80% 6.20% 12.50% 0.28 18
dsip 6.42 291 20 -3.70% -14.90% -0.90% -19.10% 0.40 20
s298 9.65 348 18 16.10% 5.40% 7.60% -0.70% 0.31 18

bigkey 5.45 374 19 -3.00% 3.00% -2.10% -7.90% 0.33 19
elliptic 7.59 1013 23 25.20% 7.20% 15.60% 10.00% 0.28 23
s38417 5.92 2224 18 3.90% 9.30% 12.70% 20.00% 0.24 18
Overall 7.66 10570 343 -0.20% -1.10% 0.50% 3.70% 0.28 348

Avg Imp -2.37% -2.86% -1.49% -2.04%
*CW is channel width

TABLE III
COMPARISON BETWEEN OUR RESULTS OBTAINED WITH UR PPFF AND TVPR
(TVPR router information used as the average of three circuits in bold face)

PPFF with delay data for individual circuit
% delay difference compared to TVPR Circuit

 t0.5,a0 t0.4,a0.1 t0.3,a0.2 t0.2,a0.3
Time
/TVPR CW*

ex5p -6.40% -10.40% -1.20% 7.20% 0.300 24
misex3 1.00% 8.20% 4.40% -0.70% 0.278 20

alu4 1.70% 5.40% 6.60% 12.60% 0.270 19
des 3.10% 0.60% 0.20% 2.30% 0.255 22
seq -2.10% -11.40% -1.60% 0.10% 0.273 23

apex2 -3.40% -3.80% -4.10% -1.10% 0.248 22
spla 4.90% -8.60% 1.20% -4.40% 0.236 30
pdc -4.00% 8.00% -3.20% -2.40% 0.234 32

ex1010 -7.80% -3.30% -1.10% -2.80% 0.257 22
tseng 10.00% 5.80% 7.40% 8.20% 0.280 18
diffeq 4.00% 7.10% 6.70% 7.10% 0.279 18
dsip -18.80% -4.20% -12.60% -17.00% 0.404 20
s298 10.10% -4.70% 0.20% 0.30% 0.315 18

bigkey 2.90% -3.40% 1.40% -2.70% 0.331 19
elliptic 12.20% 30.80% 9.10% 6.90% 0.280 23
s38417 11.30% 13.50% 9.40% 15.90% 0.240 18
Overall -0.30% -1.00% 0.80% 1.90% 0.280 348

*CW is channel width

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 11

Previous experiments always ran TVPR followed by
routing analysis and partitioning-based placement for each
circuit. However, doing so is against our original goal of
speeding up the placement process. We would like to find out
whether the routing profile generated from a subset of circuits
would have the same benefits for all circuits. If the answer to
this question is positive, then we can run TVPR on only a few
representative circuits, perform the routing analysis and store
the results in a table. Then, we can avoid running TVPR
altogether and use the routing profile information within our
proposed PPFF flow. The flow of this set of experiments is
shown in Fig. 14.

The second experiment is performed by using information
about the TVPR router analysis as average of three different
representative circuits, which are shown in bold face in Table
III. The representative circuits were selected randomly from

small, medium and large circuits.
All circuits are placed with our algorithm and successfully

routed with the TVPR router. It can be seen that the overall
improvement exhibits the same trend as when the delay data
of a circuit is used for itself and the best overall delay is
approximately the same at the same cost function weight
combinations. It is worth noting here that the parallel
placement for FPGA can provide practically the same delay
with a 2.3 fold speedup [3]. However, their experiments were
done only for the combinational circuits and used many
processors (our combinational results are better than our
sequential circuits).

Since we use the TVPR profiling on a few circuits only, our
algorithm can be used as a stand-alone placement tool, and
hence the placement run-time for a larger set of circuits will
be dramatically decreased. The average runtime is about 0.28
of that of TVPR or about 3.6 times faster than TVPR. To
better estimate the speedup, we also performed a regression
analysis between TVPR’s runtime and our approach. The
fitting linear curve has a slope of 0.248, which translates to a
4x speedup. The regression analysis shows that our method
scales better as circuit sizes increase. Note that our algorithm
can also be used for multiple placement runs of the same
circuit for quick solution space exploration.

However, the benchmark circuits used in this simulation are
small compared to the commercial circuits. To project the
speedup that PPFF can obtain for those commercial circuits,

the trend lines are plotted for both TVPR and PPFF as shown
in Fig. 15. It can be seen that the order of growth of PPFF is
smaller than that of TVPR which indicate that PPFF can
achieve even more speedup for large circuits.

For some applications in which the quality is not the prime
objective, we can further achieve more speed up by reducing
the starting temperature in the low temperature Simulated
Annealing phase. Fig. 16 shows the percentage delay
difference when tuning the starting temperature with fixed
cost function weights as 0.4 for timing and 0.1 for alignment.
It can be seen that we can achieve 5.5 speedup with no more
than 4% delay degradation.

C. Determining the Relative Effect of Our Heuristic
Methods
As mentioned in Section III.E.2, the routing profiles are

similar in shape regardless of the placement algorithm used.
Therefore, it is possible to use the delay which is extracted by
the circuit placed by PPFF which require less runtime than
TVPR. To illustrate this idea, we performed an experiment

following the flow shown in Fig. 17.
Two sources of delay information are studied: the delay

information extracted from the PPFF placement method
(shown in Fig. 14), and the delay information that is used
inside TVPR. Note that the delay table used inside TVPR does
not consider net criticalities: only wire length is considered in
estimating the delay of a net. The experiment is performed by

using the same channel widths as the ones used in Section
IV.A and IV.B. When the delay tables of TVPR are used
during our flow, the post-routing delay degrades by 2.3% on
average compared to the second column in Table III (t0.4,
a0.1). The above experiment showed that better delay
estimations would improve the results of our method.
 Now we would like to know the effect of each of the two

Size vs Runtime

y = 0.004x1.5123

y = 0.0031x1.3797

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000

cells

se
co

nd

Vpr run time
PPFF run time

Fig. 15. Regression analysis of the runtimes.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1*T 0.9*T 0.7*T 0.5*T 0.4*T 0.3*T 0.2*T

sp
ee

du
p

-0.040

-0.030

-0.020

-0.010

0.000

0.010

0.020

%
 im

pr
ov

em
en

t

speedup
% improvement

Fig. 16. % delay difference for difference starting temperature.

Timing
info VPR Routing

Selected
circuits VPR Placement VPR Routing

Our placement

Routing analysis

Ckt netlist

Fig. 14. The flow of the second set of experiments.

Timing
info VPR Routing

Selected
circuits

PPFF / TVPR
Placement VPR Routing

Our placement

Routing analysis

Ckt netlist

Timing
info VPR Routing

Selected
circuits

PPFF / TVPR
Placement VPR Routing

Our placement

Routing analysis

Ckt netlist

Fig. 17. The flow to determine the effect of different delay information.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 12

major components of our method: alignment and partition
ordering. The contribution of each component is studied by
disabling each in turn and comparing the results after routing.
The channel width used for each circuit in this experiment is
the same as that used in the experiment shown in Fig. 14,
hence, fixing one parameter in the design quality metrics
space to provide a meaningful comparison between different
methods. The base case in these experiments is the post-
routing delay of the second column of Table III (t0.4, a0.1).

We used the following methods to test the effectiveness of
each of our techniques:
• Alignment: we disable the alignment during partitioning

based placement, overlap removal, distribution and low
temperature annealing (see Fig. 2). On average, this
resulted in 3.4% quality degradation compared to the base
case.

• Partition ordering: the best partition order determined by
the algorithm proposed in Section III.C was replaced by
random ordering. This resulted in 1.4% average quality
loss compared to the base case.

V. CONCLUSIONS
We presented a partitioning-based timing-driven placement

algorithm for FPGAs. We achieved almost 4x speedup over
TVPR, with comparable circuit delays and a penalty of 1.5%
increase in total channel width. We pointed out the importance
of analyzing the behavior of the routing algorithm and using
that model in the placement engine to generate placements
that conform to routing optimization. We proposed an
alignment technique, which facillitates placements, which are
superior to the ones generated by the traditional bounding box
minimization techniques. When TVPR is augmented with this
technique, its results improve by 5% with virtually no extra
runtime. Better placement qualities were achieved by using
the proposed alignment technique in a partitioning-based
placer compared to a traditional min-cut partitioning-based
placer. We also proposed a technique to find the best
partitioning order among placement regions in order to
minimize alignment dependency during the integration of the
terminal alignment into the partitioning based placement,.

We did not explicitly consider congestion while performing
alignment, but implicitly reduce congestion by using
partitioning (minimize cut between partitions, hence reducing
the number of nets that connect them) and low temperature
simulated annealing (minimizing wire length implicitly
reduces congestion). We believe that performing a congestion-
aware alignment can reduce the load of low temperature
simulated annealing and allow faster convergence to high
quality placements.

REFERENCES
[1] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar , “Multilevel

Hypergraph Partitioning: Application in VLSI domain,” in Proc. Design
Automation Conf., pp. 526-529, 1997.

[2] Xilinx Inc., The Programmable Logic Data Book, 2002.

[3] P. K. Chan and M. D. F. Wong , “Parallel Placement for Field-
Programmable Gate Arrays,” in Proc. ACM Int. Symp. FPGAs, pp. 43-
50, 2003.

[4] M. G. Wrighton and A. M. DeHon , “Hardware-Assisted Simulated
Annealing with Application for Fast FPGA Placement,” in Proc. ACM
Int. Symp. FPGAs, pp. 33-42, 2003.

[5] Y.-W Chang, K. Zhu and D. F. Wong , “Timing-Driven Routing for
Symmetrical Array-Based FPGAs,” ACM Trans. Design Automation
Elec. Syst., vol. 5, no. 3, pp. 433-450, July 2000.

[6] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing
Tool for FPGA Research,” Int. Workshop Field Programmable Logic
and Applications, pp.213-222, 1997.

[7] A. Marquardt, V. Betz and J. Rose, “Timing-Driven Placement for
FPGAs,” in Proc. ACM Int. Symp. FPGAs, pp. 203-213, 2000.

[8] C. Mulpuri and S. Hauck , “Runtime and quality tradeoffs in FPGA
Placement and routing,” in Proc. ACM Int. Symp. FPGAs, pp. 29-36,
2001.

[9] Y. Sankar and J. Rose , “Trading quality for compile time: ultra-fast
placement for FPGAs,” in Proc. ACM Int. Symp. FPGAs, pp. 157-166,
1999.

[10] W. Swartz and C. Sechen , “Timing Driven Placement for Large
Standard Cell Circuits,” in Proc. Design Automation Conf., pp. 211-215,
1995.

[11] D. J.-H. Huang and A.B. Kahng , “Partitioning-based Standard-cell
Global Placement with an Exact Objective,” in Proc. Int. Symp. Physical
Design, pp. 18-25, 1997.

[12] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-
submicron FPGAs, Boston, MA: Kluwer Academic Publishers, 1999.

[13] M. Wang, X. Yang and M. Sarrafzadeh , “DRAGON2000: Standard-
Cell Placement Tool for Large Industry Circuits,” in Proc. IEEE-ACM
Int. Conf. Computer-Aided Design, pp. 260-263, 2000.

[14] Y.-W. Chang and Y.-T. Chang, “An Architecture-Driven Metric for
Simultaneous Placement and Global Routing for FPGAs,” in Proc.
Design Automation Conf., pp. 567-572, 2000.

[15] M. Khellah, S. Brown and Z. Vranesic , “Minimizing Interconnection
Delays in Arrays-based FPGAs,” in Proc. IEEE Custom Integrated
Circuits Conf., pp. 181-184, 1994.

[16] V. Betz and J. Rose , “FPGA Routing Architecture: Segmentation and
Buffering to Optimize Speed and Density,” in Proc. ACM Int. Symp.
FPGAs, pp. 59-68, 1999.

[17] M. Hutton, K. Adibsamii and A. Leaver , “Timing-Driven Placement for
Hierarchical Programmable Logic Devices,” in Proc. ACM Int. Symp.
FPGAs, pp. 3-11, 2001.

[18] N. Togawa, M. Sato and T. Ohtsuki , “A Simultaneous Placement and
Global Routing Algorithm with Path Length Constraints for Transport-
Processing FPGAs,” in Proc. Asia South Pacific Design Automation
Conf., pp. 569-578, 1997.

[19] S. K. Nag and R. A. Rutenbar, “Performance-driven simultaneous
placement and routing for FPGAs,” IEEE Trans. Computer-Aided
Design, Vol. 17, No. 6, pp. 499-518, June, 1998.

[20] E.S. Ochotta, et.al., “A Novel Predictable Segmented FPGA Routing
Architecture,” in Proc. ACM Int. Symp. FPGAs, 1998, pp 3-11.

[21] R. Jayaraman, “Physical Design for FPGAs,” in Proc. Int. Symp.
Physical Design, pp. 214-221, 2001.

[22] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen
and B. Troxel, "A Hybrid ASIC and FPGA Architecture", International
Conference on Computer-Aided Design, pp. 187 – 194, 2002.

Pongstorn Maidee (S’03) received the B.E. degree from King Mongkut's
Institute of Technology Thonburi, Bangkok, Thailand, in 1993 and M.S. from
University of Minnesota, Minneapolis, in 2003, both in electrical engineering.
He is currently pursuing the Ph.D. degree in electrical engineering at
University of Minnesota.
His research interests include computer-aided design for VLSI, especially
physical design, and combinatorial optimization.

Cristinel Ababei (S’01) is a Ph.D. candidate at University of Minnesota. He
received the M.S. degree in Electrical Engineering from University of
Minnesota in 2002. He received the B.S. and M.S. degrees in Electrical
Engineering from University of Iasi, Isai, Romania, in 1996 and 1998,
respectively. His research interests include CAD for layout and logic synthesis
for robust high-performance low-power VLSI circuits, FPGA synthesis and
reconfigurable systems.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 24, No. 3, Mar. 2005 13

Kia Bazargan (S’97 M’00) received his B.S. in Computer Science from
Sharif University in Tehran, Iran, and his M.S. and PhD in Electrical and
Computer Engineering from Northwester University in Evanston, IL in 1998
and 2000 respectively. He is currently an Assistant Professor in the Electrical
and Computer Engineering at University of Minnesota. He has served on the
technical program committee of a number of IEEE sponsored conferences
(e.g., ISPD, ICCAD, GLSVLSI). He is a guest co-editor of ACM Transactions
on Embedded Computing Systems (ACM TECS), Special Issue on
Dynamically Adaptable Embedded Systems. He was a recipient of NSF
CAREER award in 2004.

