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Lecture 12 
Domain Specific Architectures (DSA)

Chapter 7

Cris Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier
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Introduction 
•Moore’s Law enabled:

 Deep memory hierarchy
 Wide SIMD units
 Deep pipelines
 Branch prediction
 Out-of-order execution
 Speculative prefetching
 Multithreading
 Multiprocessing

•Objective:
 Extract performance from software 

that is oblivious to architecture

3

4



3

Introduction
• Need factor of 100 improvements in number of 

operations per instruction
 Requires domain specific architectures (DSAs) 

 For ASICs, NRE cannot be amortized over large volumes

 FPGAs are less efficient than ASICs

• Video: 
 https://www.acm.org/hennessy-patterson-turing-lecture 

• Paper:
 https://cacm.acm.org/magazines/2019/2/234352-a-new-

golden-age-for-computer-architecture/fulltext

• Slides: 
 https://iscaconf.org/isca2018/docs/HennessyPattersonTurin

gLectureISCA4June2018.pdf 

AI/ML Domain
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Artificial Intelligence, Machine Learning and Deep Learning

Example Domain: Deep Neural Networks
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Example Domain: Deep Neural Networks

Example Domain: Deep Neural Networks

•Three of the most important DNNs:
1. Multi-Layer Perceptron
2. Convolutional Neural Network
3. Recurrent Neural Network
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1) Multi-Layer Perceptron (MLP)

2) Convolutional Neural Network (CNN)
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◼ Parameters:
◼ DimFM[i-1]: Dimension of the (square) input Feature Map

◼ DimFM[i]: Dimension of the (square) output Feature Map

◼ DimSten[i]: Dimension of the (square) stencil

◼ NumFM[i-1]: Number of input Feature Maps

◼ NumFM[i]: Number of output Feature Maps

◼ Number of neurons: NumFM[i] x DimFM[i]2

◼ Number of weights per output Feature Map: NumFM[i-1] x 
DimSten[i]2

◼ Total number of weights per layer: NumFM[i] x Number of 
weights per output Feature Map

◼ Number of operations per output Feature Map: 2 x DimFM[i]2 x 
Number of weights per output Feature Map

◼ Total number of operations per layer: NumFM[i] x Number of 
operations per output Feature Map = 2 x DimFM[i]2 x 
NumFM[i] x Number of weights per output Feature Map = 2 x 
DimFM[i]2 x Total number of weights per layer

◼ Operations/Weight: 2 x DimFM[i]2

2) Convolutional Neural Network (CNN)

◼ Batches:
◼ Reuse weights once fetched from memory across multiple inputs

◼ Increases operational intensity

◼ Quantization
◼ Use 8- or 16-bit fixed point

◼ Summary:
◼ Need the following kernels:

◼ Matrix-vector multiply

◼ Matrix-matrix multiply

◼ Stencil

◼ ReLU

◼ Sigmoid

◼ Hyperbolic tangent

2) Convolutional Neural Network (CNN)
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3) Recurrent Neural Network (RNN)
◼ Speech recognition and language translation

◼ Long short-term memory (LSTM) network

◼ Parameters:
◼ Number of weights per cell: 3 x (3 x 

Dim x Dim)+(2 x Dim x Dim) + (1 x Dim 
x Dim) = 12 x Dim2

◼ Number of operations for the 5 
vector-matrix multiplies per cell: 2 x 
Number of weights per cell = 24 x 
Dim2

◼ Number of operations for the 3 
element-wise multiplies and 1 
addition (vectors are all the size of 
the output): 4 x Dim

◼ Total number of operations per cell (5 
vector-matrix multiplies and the 4 
element-wise operations): 24 x Dim2 + 
4 x Dim

◼ Operations/Weight: ~2

3) Recurrent Neural Network (RNN)
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Machine Learning Mapping to Linear Algebra

Summary
•Need high-efficient (performance and power) 

implementation of dense matrix operations
 Matrix-vector, matrix-matrix multiplication, and stencil

•Other nonlinear functions
 ReLU, Sigmoid, tanh, etc.
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Five Guidelines for Domain Specific Architectures (DSAs)

Guidelines for DSAs
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Examples of DSAs

1.Tensor Processing Unit

2.Microsoft Catapult

3.Intel Crest

4.Pixel Visual Core

1) Tensor Processing Unit (TPU)
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Tensor Processing Unit

Tensor Processing Unit
◼ Read_Host_Memory

◼ Reads memory from the CPU memory into the unified buffer

◼ Read_Weights
◼ Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit

◼ MatrixMatrixMultiply/Convolve
◼ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix 

multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the 
accumulators

◼ takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces 
a B*256 output, taking B pipelined cycles to complete

◼ Activate
◼ Computes activation function

◼ Write_Host_Memory
◼ Writes data from unified buffer into host memory
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TPU Microarchitecture – Systolic Array

TPU Implementation
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Improving the TPU

TPU and the 5 Guidelines
• Use dedicated memories

◼ 24 MiB dedicated buffer, 4 MiB accumulator buffers

• Invest resources in arithmetic units and dedicated memories
◼ 60% of the memory and 250X the arithmetic units of a server-class CPU

• Use the easiest form of parallelism that matches the domain
◼ Exploits 2D SIMD parallelism

• Reduce the data size and type needed for the domain
◼ Primarily uses 8-bit integers

• Use a domain-specific programming language
◼ Uses TensorFlow
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•Needed to be general purpose 
and power efficient
 Uses FPGA PCIe board with dedicated 

20 Gbps network in 6 x 8 torus
 Each of the 48 servers in half the rack 

has a Catapult board
 Limited to 25 watts
 32 MiB Flash memory
 Two banks of DDR3-1600 (11 GB/s) and 

8 GiB DRAM
 FPGA (unconfigured) has 3962 18-bit 

ALUs and 5 MiB of on-chip memory
 Programmed in Verilog RTL
 Shell is 23% of the FPGA

2) Microsoft Catapult

•CNN accelerator, mapped across multiple FPGAs

Microsoft Catapult: CNN
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Microsoft Catapult: CNN

Microsoft Catapult: Search Ranking

◼ Feature extraction (1 FPGA)
◼ Extracts 4500 features for every document-query pair, e.g. frequency in which the query appears in the page

◼ Systolic array of FSMs

◼ Free-form expressions (2 FPGAs)
◼ Calculates feature combinations

◼ Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate score)
◼ Uses results of previous two stages to calculate floating-point score

◼ One FPGA allocated as a hot-spare
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Microsoft Catapult: Search Ranking
◼ Free-form expression evaluation

◼ 60 core processor

◼ Pipelined cores

◼ Each core supports four threads that can hide each other’s latency

◼ Threads are statically prioritized according to thread latency

Microsoft Catapult: Search Ranking

◼ Version 2 of Catapult
◼ Placed the FPGA between the CPU and NIC

◼ Increased network from 10 Gb/s to 40 Gb/s

◼ Also performs network acceleration

◼ Shell now consumes 44% of the FPGA

◼ Now FPGA performs only feature 
extraction
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Catapult and the 5 Guidelines
◼ Use dedicated memories

◼ 5 MiB dedicated memory

◼ Invest resources in arithmetic units and dedicated memories
◼ 3926 ALUs

◼ Use the easiest form of parallelism that matches the domain
◼ 2D SIMD for CNN, MISD parallelism for search scoring

◼ Reduce the data size and type needed for the domain
◼ Uses mixture of 8-bit integers and 64-bit floating-point

◼ Use a domain-specific programming language
◼ Uses Verilog RTL; Microsoft did not follow this guideline

3) Intel Crest
◼ DNN training

◼ 16-bit fixed point

◼ Operates on blocks of 32x32 matrices

◼ SRAM + HBM2
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4) Pixel Visual Core
◼ Pixel Visual Core

◼ Image Processing Unit

◼ Performs stencil operations

◼ Decended from Image Signal processor

Pixel Visual Core
◼ Software written in Halide, a DSL

◼ Compiled to virtual ISA

◼ vISA is lowered to physical ISA using application-specific parameters

◼ pISA is VLSI

◼ Optimized for energy
◼ Power Budget is 6 to 8 W for bursts of 10-20 seconds, dropping to tens of 

milliwatts when not in use

◼ 8-bit DRAM access equivalent energy as 12,500 8-bit integer operations or 7 to 100 
8-bit SRAM accesses

◼ IEEE 754 operations require 22X to 150X of the cost of 8-bit integer operations

◼ Optimized for 2D access
◼ 2D SIMD unit

◼ On-chip SRAM structured using a square geometry

37

38



20

Pixel Visual Core

Pixel Visual Core
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Pixel Visual Core

Visual Core and the 5 Guidelines

◼ Use dedicated memories
◼ 128 + 64 MiB dedicated memory per core

◼ Invest resources in arithmetic units and dedicated memories
◼ 16x16 2D array of processing elements per core and 2D shifting network per 

core

◼ Use the easiest form of parallelism that matches the domain
◼ 2D SIMD and VLIW

◼ Reduce the data size and type needed for the domain
◼ Uses mixture of 8-bit and 16-bit integers

◼ Use a domain-specific programming language
◼ Halide for image processing and TensorFlow for CNNs
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More Emerging ML Accelerators

Cerebras

https://www.cerebras.net/product-chip/ 
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NVIDIA DGX

https://www.nvidia.com/en-us/data-center/dgx-platform/ 

NVIDIA Jetson Modules

https://developer.nvidia.com/embedded/jetson-modules 

45

46

https://www.nvidia.com/en-us/data-center/dgx-platform/
https://developer.nvidia.com/embedded/jetson-modules


24

TESLA: Self Driving Computer

https://www.tesla.com/AI 

Tensor Processing Unit (TPU) – V1, …, V5, …

https://en.wikipedia.org/wiki/Tensor_Processing_Unit 

https://cloud.google.com/tpu 

https://cloud.google.com/blog/topics/systems/tpu-v4-enables-performance-energy-and-co2e-efficiency-gains
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Edge TPU

• https://cloud.google.com/edge-tpu 

• https://coral.ai/products/ 

MAX78002

• https://www.analog.com/en/products/max78002.html 
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• End of Dennard Scaling and Moore’s Law 
➢ architecture innovation to improve performance/cost/energy

• Security ⇒architecture innovation too

• Domain Specific Languages ⇒Domain Specific 
Architectures

• Free, open architectures and open-source implementations
➢ everyone can innovate and contribute

• Cloud FPGAs ⇒all can design and deploy custom “HW”

• Agile HW development ⇒all can afford to make (small) 
chips

• Like 1980s, great time for architects in academia & in 
industry!

Conclusion: A New Golden Age

Resources, Credits
•A New Golden Age for Computer Architecture Slides

 https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf 

•Yonghong Yan’s slides
 https://passlab.github.io/CSCE513/notes/lecture26_DSA_DomainSpecificArchitectures.pdf 

•Kathy Yelic’s Talks 
 https://people.eecs.berkeley.edu/~yelick/talks.html 

•Sudeep Pasricha
 Keynote talk at NoCArc 2021

•https://www.isc-hpc.com/ 

•https://io.google/2023 
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