COEN-4730/EECE-5730 Computer Architecture

Lecture 12
Domain Specific Architectures (DSA)
Chapter 7

Cris Ababei
Dept. of Electrical and Computer Engineering

m MARQUETTE

m. UNIVERSITY

BE THE DIFFERENCE.

Credlits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

The Moore’s Law Trend

1 PFlopis:

(1075,

perscalar/Vector/Parallel GPUs DSAs

1 TFlo| s
(102
2X Transistors/Chip T
= Every 1.5 Years Mcc]
Vector

1 GFlopls /C

(109 Super Scalar / ey

/ eN:ray L J
18411 Fiopia)
1845 100 -
; cbc a4a 1,000
1 MFlo % IEM 3W)5 :-1 :mnmm _
(10%) 1981 100,000
1854 1,000,000 {1 MogaFiep/s, MFiopis]
1958 10,000,000 —
— IBM 7090F 176 000,00
/ ST 1,000,000.000 (1 GigaFlop/s, GFlop/s]
1982 —_
1993 100,000,000.000
1 KFlaals ABET 1,000,000,000,000 {1 TeraFiopis, TFices)
(10?) C1 2090 10,000,009.900,000 —
EDSAC 1 2005 131,000,000,000,000 {131 Thcpia)
1950 1960 1970 1980 1990 2000 2010 42020

Intel Process Technology Innovations

.
{ Angstromera
‘

Intel

L | i ” . 20A

. COAG
Intel

First Intel 10nm
o

Performance Per Watt

Intel
Intel 14nm

Intel 22nm
Intel 32nm
Intel 45nm
- 65nm

90nm | :JD;

accelerated

Introduction
eMoore’s Law enabled: 0

° Deep memory hierarchy i
° Wide SIMD units T oo
° Deep pipelines :

° Branch prediction £

° Qut-of-order execution e . . 00 2010 2015

* Speculative prefetching
° Multithreading =

° Multiprocessing i i}
eObjective:
° Extract performance from software or or
that is oblivious to architecture e e e e e e oW

Introduction

¢ Need factor of 100 improvements in number of
operations per instruction
° Requires domain specific architectures (DSAs)
° For ASICs, NRE cannot be amortized over large volumes
° FPGAs are less efficient than ASICs

e Video:

° https://www.acm.org/hennessy-patterson-turing-lecture

[] P a p er. Congratulations to the 2017 A.M. Turing Award Winners: John L.

Hennessy and David A. Patterson!
° https://cacm.acm.org/magazines/2019/2/234352-a-new-
golden-age-for-computer-architecture/fulltext
e Slides:

° https://iscaconf.org/isca2018/docs/HennessyPattersonTurin
glecturelSCA4June2018.pdf

Turing Lecture

Al/ML Domain

On Images and Videos Language Understanding

https://www.acm.org/hennessy-patterson-turing-lecture
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf

Artificial Intelligence, Machine Learning and Deep Learning

Big Data

Artificial Intelligence Processing

Sophisticated
Algorithms

Statistics and
mathematics, including
optimization and linear
algebra

Example Domain: Deep Neural Networks

* Inpired by neuron of —# Cupe
the brain -

* Computes non-linear
“activiation” function
of the weighted sum of
input values

* Neurons arranged in

layers

Name DNN layers Weights Operations/Weight
MLPO S 20M 200

MLPI1 B SM 168
LSTMO 58 52M &4
LSTM1 56 34M 96

CNNO 16 8M 2888

CNN1 89 100M 1750

Figure 7.5 Six DNN applications that represent 95% of DNN workloads for inference
at Google in 2016, which we use in Section 7.9. The columns are the DNN name, the
number of layers in the DNN, the number of weights, and operations per weight (oper-
ational intensitv). Fiaure 7.41 on paae 595 aoes into more detail on these DNNs.

Example Domain: Deep Neural Networks

* Most practioners will choose an existing design
— Topology and Data type

* Training (learning):
— Calculate weights using backpropagation algorithm
— Supervised learning: stocastic gradient descent

Size of

benchmark's DNN Training
Type of data Problem area training set architecture Hardware time

text [1] Word prediction 100 billion words 2-layer skip I NVIDIA Titan X | 6.2 hours
(word2vec) (Wikipedia) gram GPU

audio [2] Speech recognition 2000 hours (Fisher 1l-layer RMN | 1 NVIDLA K1200 | 3.5 days
Corpus) GPU

images [3] Image 1 million images 22-layer CNN 1 NVIDIA K20 3 weeks
classification (ImageNet) GPU

video [4] activity recognition 1 million videos &-layer CNN 10 NVIDLA GPUs 1 month

(Sports-1M)

Figure 7.6 Training set sizes and training time for several DNNs (landola, 2016).

» Inferrence: use neural network for classification

Example Domain: Deep Neural Networks

eThree of the most important DNNs:
1. Multi-Layer Perceptron
2. Convolutional Neural Network
3. Recurrent Neural Network

10

1) Multi-Layer Perceptron (MLP)

= Parameters: gt 3 Outpt
— Dim[i]: number of neurons ' —
— Dim[i-1]: dimension of input vector o /"'
— Number of weights: Dim[i-1] x Dim[i] . ,il; g *:\
— Operations: 2 x Dim[i-1] x Dim[i] \Q—& AN
— Operations/weight: 2 SO >£6
. , Loveri B _/)g /—’ _
ayerfi-1] ayerfi] (N~
Dim[i-1]
Input
Dim[i]
VMX nif Output
Dimli]

Weights

5
]
3
@
=
3
[
=
=
=
Dim[i-1]

11

2) Convolutional Neural Network (CNN)

» Computer vision

» Each layer raises the level of abstraction
— First layer recognizes horizontal and vertical lines
— Second layer recognizes corners
— Third layer recognizes shapes
— Fourth layer recognizes features, such as ears of a dog
— Higher layers recognizes different breeds of dogs

Input image Output feature map
ol o
O~
VMK nli\ s}
v
LalCa
/ 1

@ Vector matrix multiply Weights
@ Nonlinear function

12

2) Convolutional Neural Network (CNN)

Layerfi-1] Layer(i] " Parameters:

(input feature maps) (output feature maps) = DimFM[i-1]: Dimension of the (square) input Feature Map

= DimFMI[i]: Dimension of the (square) output Feature Map

= DimSten([i]: Dimension of the (square) stencil

s NumFM][i-1]: Number of input Feature Maps

= NumFM][i]: Number of output Feature Maps

= Number of neurons: NumFM([i] x DimFM[i]?

= Number of weights per output Feature Map: NumFM[i-1] x
DimSten([i]2

s Total number of weights per layer: NumFM([i] x Number of
weights per output Feature Map

= Number of operations per output Feature Map: 2 x DimFM[i]2x
Number of weights per output Feature Map

s Total number of operations per layer: NumFM][i] x Number of
operations per output Feature Map = 2 x DimFM[i]2x
NumFM([i] x Number of weights per output Feature Map = 2 x
DimFMI[i]?x Total number of weights per layer

= Operations/Weight: 2 x DimFM[i]?

NumFM[i-1]

@ Vector matrix multiply
@ Nonlinear function

NumFM[i-1]

13

2) Convolutional Neural Network (CNN)

m Batches:
s Reuse weights once fetched from memory across multiple inputs
= Increases operational intensity

m Quantization
= Use 8- or 16-bit fixed point

= Summary:
= Need the following kernels:

= Matrix-vector multiply
= Matrix-matrix multiply
= Stencil

= RelU

= Sigmoid

= Hyperbolic tangent

14

3) Recurrent Neural Network (RNN)

m Speech recognition and language translation
m Long short-term memory (LSTM) network

now”
l+l

Time

| |
7.-
|]
T

<end_input> —— “momento”
“momento” —-— “el”
‘es” —— “ahora”
“ahora” —-— <end_output>

15
[CTMemoryin] - [STMemoryin
e = Parameters:
O | (05} nemiesney = Number of weights per cell: 3 x (3 x
!O Eloment.wise mutioly Dim x Dim)+(2 x Dim x Dim) + (1 x Dim
m&:&'&"’ i@Elememwtseaddmon xDim)= 12 x Dim?
p E (o) Noninear tunction = Number of operations for the 5
| @ L G i ©) vector-matrix multiplies per cell: 2 x
e Number of weights per cell = 24 x
skt o Dim?
weig|
[et = Number of operations for the 3
@, (1)““ & element-wise multiplies and 1
addition (vectors are all the size of
ity the output): 4 x Dim
~ P = Total number of operations per cell (5
e weights vector-matrix multiplies and the 4
- element-wise operations): 24 x Dim? +
weights 4 x Dim
Citemoryout| [STiemsryost = Operations/Weight: ~2

16

Machine Learning Mapping to Linear Algebra

Graphical

Logistic _
Dimensionality Clustering
R si Model Learni
o feen (G0N e (Gomatons
‘ O:"gl]lt Pr.'.'A] c|u:c:ri':g) Learning (e.g., | Neural Nets)
Machines ’ CONCORD)

Sparse
Matrix-
Sparse
Vector
(SpMSpV)

Times
Multiple
Dense Vectors

Aydin Buluc Increasing arithmetic intensity

17

Summary

eNeed high-efficient (performance and power)
implementation of dense matrix operations
° Matrix-vector, matrix-matrix multiplication, and stencil

eOther nonlinear functions
° RelLU, Sigmoid, tanh, etc.

»

p
12995
TN

B
b,
b;
3,4 al..'_ e = é il r-'r e
xH = A=z 3 AL
a,la, --l—».l +
a,.,|a I

18

Five Guidelines for Domain Specific Architectures (DSAs)

1.

Use dedicated memories to minimize distances of data

movement

— Hardware-controlled multi-level cache » domain-specific software
controlled scratch-pad

Invest resources into more arithmetic units or bigger

memories

— Core optimization (000, speculation, threading, etc) =& more
domain-specific FU/memory

Use the easiest form of parallelism that matches the domain
— MIMD = SIMD or VLIW that matches domain

Reduce data size and type to the simplest needed for the

domain

— General-purpose 32/64 integer/float = domain-specific 8/16 int/float
Use a domain-specific programming language

— General-purpose C/C++/Fortran = Domain-specific language
» Halide for vision processing, TensorFlow for DNN

19

Guideline

Guidelines for DSAs

TPU

Catapult

Crest

Pixel Visual Core

Design target

Data center ASIC

Data center FPGA

Data center ASIC

PMD ASIC/SOC IP

1. Dedicated 24 MiB Unified Buffer, Vanes N.A Per core: 128 KiB line

memornies 4 MiB Accumulators buffer, 64 KiB P.E.
memory

2. Larger 65,536 Multply- Varies N.A Per core: 256 Multiply-
anthmetc unit accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD, SIMD. MISD N.A MPMD, SIMD, VLIW
parallelism n-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit mteger 21-bit A. Pu. 8-bit, 16-bit, 32-hit integer
size 32-bit Fl. PL

5. Domain- TensorFlow Venlog TensorFlow Halide/TensorFlow
specific lane.

20

10

Examples of DSAs

1.Tensor Processing Unit
2.Microsoft Catapult
3.Intel Crest

4.Pixel Visual Core

21

1) Tensor Processing Unit (TPU)

* Google’s DNN ASIC (Application-specific Integrated
Circuit)
— Designed for inference phase
— TensorFlow programming interface
— First TPU in 2015, Second 2017, Third in May 2018
» Design-verification-build-deployment in 15 months for the first one
* Heart:
— 256 x 256 8-bit matrix multiply-add unit
— Large software-managed scratchpad

» Coprocessor on the PCle bus

22

11

Tensor Processing Unit
— [‘Somowarems 11

‘ oGBS
14 GiB/s 30 GiB/s £F0
: (weight fetcher)
.—. ‘ﬂ 30 GiBls
10

|

| Matrx m
14 14 8 D
GiB/s GiB/s
EDR T T
£
Activation
167 GiB/s
X oft-chip 10
[Data buffer
[] computation __J
[control
23
Read_Host_Memory
= Reads memory from the CPU memory into the unified buffer
Read_Weights
= Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
MatrixMatrixMultiply/Convolve
= Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix
multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the
accumulators
= takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces
a B*256 output, taking B pipelined cycles to complete
Activate
= Computes activation function
Write_Host_Memory
= Writes data from unified buffer into host memory
24

12

TPU Microarchitecture — Systolic Array

E
L)
H
=
2
2
T
<

Weight Memary

k]

wz W &
L] a
=
wi
x

x1
o Wiz Wi m' NB@

9«1: wia WIT) WIZ) (W1E s g g e
3= vy * gy * wy

25
TPU Implementation
* TPU chip fabricated using the 28-nm process, 700 MHz
clock.
— Less than half size of an Intel Haswell CPU, which is 662 mm?2.
Local Unified Buffer for
Matrix multiply unit
(96Kz5ExgD = 24 SaE R | (259x258x80 = SAKMAL,)
29% of chip 21%
I Host il | Mmumors |
Interf, 2% | (4Kx256x32b = 4 MiB) 6% §
- Activation pipeline 6% pﬁ‘n ;
R —— ddr3 Figure 7.16 TPU printed circut board. it can be inserted into the slot for an SATA disk.
PCle = 3% in 8 server, bt the card wses the PCle bus,

Interface 3% Misc. WO 1% & ———
Figure 7.15 Floor plan of TPU die. The shading follows Figure 7.14. The light data
buffers are 37%, the light computation units are 30%, the medium I/O is 10%, and
the dark control is just 2% of the die. Control is much larger (and much more difficult
to design) in a CPU or GPU. The unused white space is a consequence of the emphasis

on time to tape-out for the TPU. R
26

13

Improving the TPU

= First, increasing memory bandwidth (memory) has the biggest impact:
— improves 3 on average when memory bandwidth increases 4 , because it reduces the time
waiting for weight memory.

= Second, clock rate has little benefit on average with or without more
accumulators.

= Third, the average girformance slightly degrades when the matrix unit expands
from 25(-|3xt256 to 512x512 for all applications, whether or not having more
accumulators.

— The issue is analogous to internal fragmentation of large pages, only worse because it's in
two dimensions.

] 38 —*— memory
5 30 : 1 [—— clock+
S 25 ~®- clock
; ’ —#— matrix+
20 — —4— matrix
a
€ - e
g = g = [
1.0 —% — I
4 " " ‘;;‘ w — -
05 SRS T =(F
0.0 0 H B
00 05 10 15 20 25 30 35 4.0 E . o
Scale relative to original MPU ﬁ":_‘.wl ‘=1}_ = a8

27

TPU and the 5 Guidelines

. Use dedicated memories
= 24 MiB dedicated buffer, 4 MiB accumulator buffers

« Invest resources in arithmetic units and dedicated memories
= 60% of the memory and 250X the arithmetic units of a server-class CPU

. Use the easiest form of parallelism that matches the domain
= Exploits 2D SIMD parallelism

. Reduce the data size and type needed for the domain
= Primarily uses 8-bit integers

. Use a domain-specific programming language

= Uses TensorFlow

28

28

14

2) Microsoft Catapult

eNeeded to be general purpose ‘cno0m22) 4 G001
and power efficient oo i

° Uses FPGA PCle board with dedicated Shell
20 Gbps network in 6 x 8 torus

° Each of the 48 servers in half the rack
has a Catapult board =

° Limited to 25 watts
° 32 MiB Flash memory

° Two banks of DDR3-1600 (11 GB/s) and
8 GiB DRAM

° FPGA (unconfigured) has 3962 18-bit
ALUs and 5 MiB of on-chip memory

° Programmed in Verilog RTL
° Shell is 23% of the FPGA

— —

Ll T

29
Microsoft Catapult: CNN
eCNN accelerator, mapped across multiple FPGAs
cortrotier ‘_L Data %] J’7'
,J,m generation T T Scan chali 5
“ ﬁo PE PE PE ﬂ
30

15

Mic[cgsoft Catapult: CNN

DRAM

Toim un puowouny

31

Microsoft Catapult: Search Ranking

Feature extraction (1 FPGA)
= Extracts 4500 features for every document-query pair, e.g. frequency in which the query appears in the page
= Systolic array of FSMs
Free-form expressions (2 FPGAs)
= Calculates feature combinations
Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate score)
= Uses results of previous two stages to calculate floating-point score

One FPGA allocated as a hot-spare

Hit vector
—| preprocessing
FSM

L
Feature- ;
<—| gathering %

Feature extraction FSMs

32

16

Microsoft Catapult: Search Ranking

Free-form expression evaluation
n 60 core processor
= Pipelined cores
= Each core supports four threads that can hide each other’s latency
= Threads are statically prioritized according to thread latency

95th percentile latency versus throughput

5
Ly — ggﬂ%vgre
3 /.E-)ﬁore __—

) / Throughput
\ YAV

29% lower Ialel;lcy

Throughput (normalized)

0 0.5 1 15 2
Latency (normalized to 95th percentile target)

33

m Version 2 of Catapult

Microsoft Catapult: Search Ranking

2-socket server blade

= Placed the FPGA between the CPU and NIC
= Increased network from 10 Gb/s to 40 Gb/s
= Also performs network acceleration

= Shell now consumes 44% of the FPGA

= Now FPGA performs only feature
extraction

QSFP g QSFP

40Gb/s

34

17

Catapult and the 5 Guidelines

Use dedicated memories

= 5 MiB dedicated memory

Invest resources in arithmetic units and dedicated memories
= 3926 ALUs

Use the easiest form of parallelism that matches the domain
m 2D SIMD for CNN, MISD parallelism for search scoring

Reduce the data size and type needed for the domain

= Uses mixture of 8-bit integers and 64-bit floating-point

Use a domain-specific programming language

= Uses Verilog RTL; Microsoft did not follow this guideline

35
3) Intel Crest
= DNN training
m 16-bit fixed point
» Operates on blocks of 32x32 matrices
= SRAM + HBM2
Interposer
ElEEE] = J[&]8]]E]
scBHam2 ||| wem | Mom || ~Custer || Custer || Custer | | Mom |wam|| | scBHEM2
PHY | Ctrir Gﬁi’ PHY
Processing Processing Processing
Cluster Cluster Cluster
SPI, IC2, MGMT
GI:’|0=‘_ Processing || Processing || Processing _=CL
Cluster Cluster Cluster
HEM | Mem Mem | HBM
8GB HBM2 PHY | Ctrir Processing Pmcaasng Ctrir | PHY 8GB HBM2
Cluster
36

18

4) Pixel Visual Core

» Pixel Visual Core
= Image Processing Unit
= Performs stencil operations
» Decended from Image Signal processor

Sensor
Lens (ccp or CMOS)
Image Output
—————= image
ISP (Display)
Img &
Stats | @
AF| AE[Aws = DRAM

37

Pixel Visual Core

m Software written in Halide, a DSL
s Compiled to virtual ISA
= VISAis lowered to physical ISA using application-specific parameters
= pISAis VLSI

m Optimized for energy
= Power Budget is 6 to 8 W for bursts of 10-20 seconds, dropping to tens of
milliwatts when not in use
= 8-bit DRAM access equivalent energy as 12,500 8-bit integer operations or 7 to 100
8-bit SRAM accesses
» |EEE 754 operations require 22X to 150X of the cost of 8-bit integer operations

m Optimized for 2D access

s 2D SIMD unit
= On-chip SRAM structured using a square geometry

38

Pixel Visual Core

s J
(W]

39

Pixel Visual Core

5x 5 stencil

40

20

Pixel Visual Core

Lens 2D stencil
processor

2D stencil 2D stencil
processor processor

DRAM

2D stencil

e

41
Visual Core and the 5 Guidelines
m Use dedicated memories
= 128 + 64 MiB dedicated memory per core
m Invest resources in arithmetic units and dedicated memories
» 16x16 2D array of processing elements per core and 2D shifting network per
core
m Use the easiest form of parallelism that matches the domain
= 2D SIMD and VLIW
m Reduce the data size and type needed for the domain
= Uses mixture of 8-bit and 16-bit integers
m Use a domain-specific programming language
= Halide for image processing and TensorFlow for CNNs
42

21

More Emerging ML Accelerators

Cerebras: Wafer-Scale Deep Learning
« Largest Chip Ever Built!

* 46,225 mm2 silicon

* 1.2 trillion transistors

* 400,000 optimized Al cores

+ 18 GB of on-chip memory A
» TSMC 16nm process | 3078 NYME S50s

NVIDIA DGX-2

* 2 PetaFlops System
+ 16X Tesla V100

* Max Power: 10kW

+ $399,000

Tesla: Self-Driving Computer
« 2 independent instances
¢ 2Ghz+ Design

+ 32 MB SRAM /instance

* 9696 MACs

NVIDIA Jetson Nano

» $99 computer for edge devices
* 472 GFLOPS

* Quad-core 64-bit ARM CPU

* 128-core GPU

« 5W/10W

Systolic-array-based architecture .Edgé? T'T% St
* V1:Inference only %) - (;_I'Ca)PSev oart
* V2: Training with bfloat I ; Bt

* V3: 2x powerful than v2 M a

« Supports TensorFlow Lite

43

Cerebras

cerebras A s Resources Developers Company JoinUs Contact Us

The Future of Al is
Here

Cerebras WSE-2 Largest GPU
15, con 826m

4.2 8ill

https://www.cerebras.net/product-chip/

44

22

https://www.cerebras.net/product-chip/

NVIDIA DGX

Clusters and Systems

DGX GH200 DGX H100

The world’s first Al supercomputer designed to Al supercomputer optimized for large generative Al
handle terabyte-class models. and other transformer-based workloads.

Giant Memory for Giant Models > Proven Choice for Enterprise Al >

DGX A100

Al supercomputer delivering world-class

performance for mainstream Al workloads.

Universal System for Al Infrastructure >

https://www.nvidia.com/en-us/data-center/dgx-platform/

45

containerization and orchestration to build, deploy, and manage Al at the edge.

NVIDIA Jetson Modules

The Jetson family of modules all use the same NVIDIA CUDA-X™ software, and support cloud-native technologies like

https://developer.nvidia.com/embedded/jetson-modules

46

https://www.nvidia.com/en-us/data-center/dgx-platform/
https://developer.nvidia.com/embedded/jetson-modules

TESLA: Self Driving Computer

Intel i7-6700K Tesla HW3

i e ‘ Processor Die Sizes

TESLA

30180 NVIDIA RTX2080 TI
SEIZYNA 754mm2

NVIDIA Xavier

i !

TR ‘ i 1 Ly “I M W\‘!’“I|||l\|l|||\I\IIH‘II||||!||||||l]|||||||l||l|||)ll|||lll||l|1|l|l|I|l||l|l\||\|lll||llllllll|lll|
123456 7 8 9 1011 12 13 14 15 16 17 18 19 2

iPhone A12
83mm2

https://www.tesla.com/Al

47
[] []
Iensor Processing Unit (TPU) - V1 V5
) ooy) oo
Tensor Processing Unit products/'917417%1
TPUVI TPUV2 TPUV3 TPUV4I 41751 TPUVSL'l | Edge vi
Date introduced 2016 2017 2018 2021 2023 2018 TPU v3-8
Process node 28 nm 16 nm 16 nm 7nm Unstated 420 teraflops
128 GB RAM
Die size (mm?) 331 <625 <700 <400 Unstated 8 cores
4 TPU chij

On-chip memory (MiB) 28 a2 a2 a2 48 S res pcorgt\lp

Clock speed (MHz) 700 700 940 1050 Unstated

Memory 8 GIBDDR3 16 GiB HBM 32 GiB HBM | 32 GIB HBM | 16 GB HBM Mxu

Matrix Multiply Unit

Memory bandwidth 34 GB/s 600 GB/s 900 GBis. 1200 GBIs. 819GBIs 1280128 bfloat1s matrices

TOP (W) 75 280 220 170 Not Listed 2 vy

TOPS (Tera Operations Per Second) 82 45 123 275 393 4 Vector One TPU core

ToPSW 031 0.16 056 162 NotListed 2 e

Chip feature Cloud TPU v3 Cloud TPU v4 TPU v4 Speedups over TPU v3

Peak compute per chip 123 tei (bf16) 275 teraflops (bf16 or int8)

HBM2 capacity and bandwidth 32 GiB, 900 GBis 32 GiB, 1200 G8/s All comparisens at 64-chip scale

#":J:ﬁ‘:i;";ma"ma‘ power 1213;22";03‘?:5\'\' 9%1;:1';;:' B TPU v4 in MLPerf Training v0.7 M TPU v3 in MLPerf Training v0.6

Interconnect topology 20 torus 3D torus :

Peak compute per pod 126 petafiops (bf16) lleuanoE (UI'Ioar int8)

iAll-reduce bandwidth per pod i 340 TBis i

Bisection bandwidth per pod 64785 u TBPs

Cloud TPU v4 pods performance table (source: Google)
https://en.wikipedia.org/wiki/Tensor_Processing_Unit .
https://cloud.google.com/tpu ResNet-50 SSD Mask R-CNN GNMT Transformer
https://cloud.google.com/blog/topics/systems/tpu-v4-enables-performance-energy-and-co2e-efficiency-gains
48

24

https://www.tesla.com/AI
https://en.wikipedia.org/wiki/Tensor_Processing_Unit
https://cloud.google.com/tpu

Edge TPU

Coral Products Industries Examples Docs & Tools. Support Partnerships About
Products
Edge TPU Helping you bring local Al to applications from prototype to production

Al at the edge

Alls pervasive today, from consumer to enterprise applications. With

- b
TITTOrTre

and power footprint, enabling the

-‘,“Hillillh

Learn more about the Es Coral
e https://cloud.google.com/edge-tpu
e https://coral.ai/products/
49
AnalogDialogue EngineerZone Wiki Careers

‘E Shopping Cart

u ANALOG
DEVICES SEARCH Q

AHEAD OF WHATS POSSILE™

myAnalog Applications Design Center

oducts > Py

> MAX78002

M AX7 8 0 0 2 Artificial Intelligence Microcontroller with Low-Power Convolutional Neural Network Accelerator

A New Breed of Al Micro Buitt ta Enable Neural Networks o Execute at Ulra-Low Power

Overview Evaluation

& Resources Design Resources | Support & Discussions Sample & Buy

Data Sheet rev.0 =5 T w
Interactive Dats Sheet Al

e https://www.analog.com/en/products/max78002.html

50

25

https://cloud.google.com/edge-tpu
https://coral.ai/products/
https://www.analog.com/en/products/max78002.html

Conclusion: A New Golden Age

e End of Dennard Scaling and Moore’s Law turing lecture
» architecture innovation to improve performance/cost/energy

e Security =architecture innovation too

e Domain Specific Languages =Domain Specific A New Golde
Architectures Age for
e Free, open architectures and open-source implementations Computer

Architecture

» everyone can innovate and contribute
e Cloud FPGAs =all can design and deploy custom “HW”

e Agile HW development =all can afford to make (small)
chips

e Like 1980s, great time for architects in academia & in
industry!

51

Resources, Credits
oA New Golden Age for Computer Architecture Slides

° https://iscaconf.org/isca2018/docs/HennessyPattersonTuringlLecturelSCA4June2018.pdf

eYonghong Yan’s slides
° https://passlab.github.io/CSCE513/notes/lecture26 DSA DomainSpecificArchitectures.pdf

eKathy Yelic’s Talks

° https://people.eecs.berkeley.edu/~yelick/talks.html

eSudeep Pasricha
° Keynote talk at NoCArc 2021

ehttps://www.isc-hpc.com/
ehttps://io.google/2023

52

52

26

https://iscaconf.org/isca2018/docs/HennessyPattersonTuringLectureISCA4June2018.pdf
https://passlab.github.io/CSCE513/notes/lecture26_DSA_DomainSpecificArchitectures.pdf
https://people.eecs.berkeley.edu/~yelick/talks.html
https://www.isc-hpc.com/
https://io.google/2023

	Slide 1: Lecture 12 Domain Specific Architectures (DSA) Chapter 7
	Slide 2
	Slide 3
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: AI/ML Domain
	Slide 7: Artificial Intelligence, Machine Learning and Deep Learning
	Slide 8: Example Domain: Deep Neural Networks
	Slide 9: Example Domain: Deep Neural Networks
	Slide 10: Example Domain: Deep Neural Networks
	Slide 11: 1) Multi-Layer Perceptron (MLP)
	Slide 12: 2) Convolutional Neural Network (CNN)
	Slide 13: 2) Convolutional Neural Network (CNN)
	Slide 14: 2) Convolutional Neural Network (CNN)
	Slide 15: 3) Recurrent Neural Network (RNN)
	Slide 16: 3) Recurrent Neural Network (RNN)
	Slide 17: Machine Learning Mapping to Linear Algebra
	Slide 18: Summary
	Slide 19: Five Guidelines for Domain Specific Architectures (DSAs)
	Slide 20: Guidelines for DSAs
	Slide 21: Examples of DSAs
	Slide 22: 1) Tensor Processing Unit (TPU)
	Slide 23: Tensor Processing Unit
	Slide 24: Tensor Processing Unit
	Slide 25: TPU Microarchitecture – Systolic Array
	Slide 26: TPU Implementation
	Slide 27: Improving the TPU
	Slide 28: TPU and the 5 Guidelines
	Slide 29: 2) Microsoft Catapult
	Slide 30: Microsoft Catapult: CNN
	Slide 31: Microsoft Catapult: CNN
	Slide 32: Microsoft Catapult: Search Ranking
	Slide 33: Microsoft Catapult: Search Ranking
	Slide 34: Microsoft Catapult: Search Ranking
	Slide 35: Catapult and the 5 Guidelines
	Slide 36: 3) Intel Crest
	Slide 37: 4) Pixel Visual Core
	Slide 38: Pixel Visual Core
	Slide 39: Pixel Visual Core
	Slide 40: Pixel Visual Core
	Slide 41: Pixel Visual Core
	Slide 42: Visual Core and the 5 Guidelines
	Slide 43: More Emerging ML Accelerators
	Slide 44: Cerebras
	Slide 45: NVIDIA DGX
	Slide 46: NVIDIA Jetson Modules
	Slide 47: TESLA: Self Driving Computer
	Slide 48: Tensor Processing Unit (TPU) – V1, …, V5, …
	Slide 49: Edge TPU
	Slide 50: MAX78002
	Slide 51
	Slide 52: Resources, Credits

