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Instruction-Level Parallelism (ILP)
• Instruction-Level Parallelism: overlap the execution 

of instructions to improve performance

• Two approaches to exploit ILP that exists inside 
workloads:
1) Rely on software technology to find parallelism, statically at compile-time 

(e.g., Itanium 2)

2) Rely on hardware to help discover and exploit the parallelism dynamically 
(e.g., Pentium 4, AMD Opteron, IBM Power, Intel Core series, new ARM 
Cortex A9) , and

3

Instruction-Level Parallelism (ILP)
•For typical Basic Block (BB), existing ILP is quite small

 BB: a straight-line code sequence with no branches in except to the entry and no 
branches out except at the exit

 average dynamic branch frequency 15% to 25% 
=> 4 to 7 instructions execute between a pair of branches

 Plus, instructions in BB likely to depend on each other

•To obtain substantial performance enhancements, we 
must exploit ILP across multiple basic blocks
•Simplest type of ILP: loop-level parallelism to exploit 

parallelism among iterations of a loop. e.g.,
  for (i=1; i<=1000; i=i+1)

  x[i] = x[i] + y[i];
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Loop-Level Parallelism
• Exploit loop-level parallelism by “unrolling loop” (which 

increases BB size) either by 
1. Static methods via loop unrolling by compiler
2. Dynamic methods via branch prediction 

• Determining instruction dependence is critical to Loop 
Level Parallelism

• If 2 instructions are
 Parallel, they can execute simultaneously in a pipeline of arbitrary depth without 

causing any stalls (assuming no structural hazards)
 Dependent, they are not parallel and must be executed in order, although they 

may often be partially overlapped

5

• InstrJ is data dependent (aka true dependence) on InstrI: 
1. InstrJ tries to read operand before InstrI writes it
2. or InstrJ is data dependent on InstrK which is dependent on InstrI

• If two instructions are data dependent, they cannot execute 
simultaneously or be completely overlapped 

• Data dependence in instruction sequence 
 data dependence in source code  effect of original data 
dependence must be preserved

• Data dependence causes a hazard in pipeline, 
called a Read After Write (RAW) hazard 

Data Dependence and Hazards

I: add r1,r2,r3

J: sub r4,r1,r3
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ILP and Data Dependencies, Hazards

•HW/SW must preserve program order: 
ordered instructions would execute as if executed sequentially 
as determined by original source program
 Dependences are a property of programs

•Presence of dependence indicates potential for a hazard, but 
actual hazard and length of any stall is property of the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can possibly be exploited

•Key Insight: exploit parallelism by preserving program order

7

•Name dependence: when 2 instructions use same register 
or memory location, called a name, but no flow of data 
between the instructions associated with that name; 2 
versions of name dependence
•InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”
•If anti-dependence caused a hazard in the pipeline, called a 

Write After Read (WAR) hazard

I: sub r4,r1,r3 

J: add r1,r2,r3

K: mul r6,r1,r7

Name Dependence #1: Anti-dependence
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Name Dependence #2: Output dependence
• InstrJ writes operand before InstrI writes it.

•Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”
• If output dependence causes a hazard in the pipeline, called a 

Write After Write (WAW) hazard
•Key Insight: Instructions involved in a name dependence can 

execute simultaneously if name used in instructions is changed 
so instructions do not conflict
 Register renaming resolves name dependence for regs
 Either by compiler or by HW

I: sub r1,r4,r3 

J: add r1,r2,r3

K: mul r6,r1,r7

9

Control Dependencies
•Every instruction is control dependent on some set of 

branches
•In general, these control dependencies must be preserved 

to preserve program order
if p1 {

 S1;

};

if p2 {

 S2;

}

•S1 is control dependent on p1, and S2 is control 
dependent on p2 but not on p1.
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Control Dependence Ignored
• Key Insight: Control dependencies need not 

be preserved
 Willing to execute instructions that should not have been executed, 

thereby violating the control dependences, if can do so without 
affecting correctness of the program 

• Instead, 2 properties critical to program 
correctness are 
1)Exception behavior 
2)Data flow

11

Example of Software Techniques

•This code, adds a scalar to a vector:
   for (i=1000; i>0; i=i–1)

    x[i] = x[i] + s;

•Assume following latencies for all examples
 Ignore delayed branch in these examples

Instruction Instruction Stall latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2 

Load double FP ALU op 1

Load double Store double 0

Integer op Integer op 0

12
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FP Loop: Where are the Hazards?
Loop: LD F0,0(R1) ;F0=vector element

  ADDD F4,F0,F2 ;add scalar from F2

  SD 0(R1),F4 ;store result

  SUBI R1,R1,8 ;decrement pointer 8B (DW)

  BNEZ R1,Loop ;branch R1!=zero

  NOP  ;delayed branch slot

Where are the stalls?

Instruction Instruction Stall latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2 

Load double FP ALU op 1

Load double Store double 0

Integer op Integer op 0

13

FP Loop: Showing Stalls

9 clocks: How can we minimize stalls?

1 Loop: LD F0,0(R1) ;F0=vector element

 2  stall

 3  ADDD F4,F0,F2 ;add scalar in F2

 4  stall

 5  stall

 6 SD 0(R1),F4 ;store result

 7 SUBI R1,R1,8 ;decrement pointer 8B (DW)

 8 BNEZ R1,Loop ;branch R1!=zero

 9  stall  ;delayed branch slot

Instruction Instruction Stall latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2 

Load double FP ALU op 1

Load double Store double 0

Integer op Integer op 0

14
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Revised FP Loop Minimizing Stalls

6 clocks: Can we make this code any faster?

1 Loop: LD F0,0(R1) 

 2  stall

 3  ADDD F4,F0,F2 

 4  SUBI R1,R1,8 

 5  BNEZ R1,Loop ;delayed branch

 6 SD 8(R1),F4 ;altered when move past SUBI

Move SD after BNEZ and change address of SD

Instruction Instruction Stall latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2 

Load double FP ALU op 1

Load double Store double 0

Integer op Integer op 0

15

Unroll Loop Four Times (straightforward way)

Rewrite 
loop to 

minimize 
stalls?

1 Loop: LD F0,0(R1)

2 ADDD F4,F0,F2

3 SD 0(R1),F4 ;drop SUBI & BNEZ

4 LD F6,-8(R1)

5 ADDD F8,F6,F2

6 SD -8(R1),F8 ;drop SUBI & BNEZ

7 LD F10,-16(R1)

8 ADDD F12,F10,F2

9 SD -16(R1),F12 ;drop SUBI & BNEZ

10 LD F14,-24(R1)

11 ADDD F16,F14,F2

12 SD -24(R1),F16

13 SUBI R1,R1,#32 ;alter to 4*8

14 BNEZ R1,LOOP

15 NOP

 15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
   Assumes R1 is multiple of 4

1 cycle stall (not shown)

2 cycles stall
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Unrolled Loop That Minimizes Stalls

•What assumptions 
made when moved 
code?
 OK to move store past 

SUBI even though 
changes register

 OK to move loads before 
stores: get right data?

1 Loop: LD F0,0(R1)

2 LD F6,-8(R1)

3 LD F10,-16(R1)

4 LD F14,-24(R1)

5 ADDD F4,F0,F2

6 ADDD F8,F6,F2

7 ADDD F12,F10,F2

8 ADDD F16,F14,F2

9 SD 0(R1),F4

10 SD -8(R1),F8

11 SD -16(R1),F12

12 SUBI R1,R1,#32

13 BNEZ R1,LOOP

14 SD 8(R1),F16 ; 8-32 = -24

 14 clock cycles, or 3.5 per iteration

17

Compiler Perspectives on Code Movement
•Compiler concerned about dependencies in program

•Whether or not a HW hazard depends on pipeline

•Try to schedule instructions to avoid hazards that cause 
performance losses

•(True) Data dependencies (RAW)
 Instruction i produces a result used by instruction j, or
 Instruction j is data dependent on instruction k, and instruction k is data 

dependent on instruction i.

•If dependent, can’t execute in parallel

•Easy to determine for registers (fixed names)

•Hard for memory (“memory disambiguation” problem)
18
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Compiler Perspectives on Code Movement

•Another kind of dependence called name dependence: 
two instructions use same name (register or memory 
location) but don not exchange data

•Antidependence  (WAR if a hazard for HW)
 Instruction j writes a register or memory location that instruction i reads 

from and instruction i is executed first

•Output dependence  (WAW if a hazard for HW)
 Instruction i and instruction j write the same register or memory location; 

ordering between instructions must be preserved. 

19

Where are the name dependencies?
1 Loop: LD F0,0(R1)

2 ADDD F4,F0,F2

3 SD 0(R1),F4 ;drop SUBI & BNEZ

4 LD F0,-8(R1)

5 ADDD F4,F0,F2

6 SD -8(R1),F4 ;drop SUBI & BNEZ

7 LD F0,-16(R1)

8 ADDD F4,F0,F2

9 SD -16(R1),F4 ;drop SUBI & BNEZ

10 LD F0,-24(R1)

11 ADDD F4,F0,F2

12 SD -24(R1),F4

13 SUBI R1,R1,#32 ;alter to 4*8

14 BNEZ R1,LOOP

15 NOP

 How can we remove them?
20
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Where are the name dependencies?
1 Loop: LD F0,0(R1)

2 ADDD F4,F0,F2

3 SD 0(R1),F4 ;drop SUBI & BNEZ

4 LD F6,-8(R1)

5 ADDD F8,F6,F2

6 SD -8(R1),F8 ;drop SUBI & BNEZ

7 LD F10,-16(R1)

8 ADDD F12,F10,F2

9 SD -16(R1),F12 ;drop SUBI & BNEZ

10 LD F14,-24(R1)

11 ADDD F16,F14,F2

12 SD -24(R1),F16

13 SUBI R1,R1,#32 ;alter to 4*8

14 BNEZ R1,LOOP

15 NOP

 Called “register renaming”
21

Compiler Perspectives
•Name Dependencies are Hard to discover for Memory 

Accesses 
 Does 100(R4) = 20(R6)?
 From different loop iterations, does 20(R6) = 20(R6)?

•Our example required compiler to know that if R1 
does not change then:

0(R1)  -8(R1)  -16(R1)  -24(R1)

   There were no dependencies between some loads and 
stores so they could be moved by each other

22
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When is it Advantageous to Unroll Loop?
•Example: Where are data dependencies? 

(A,B,C distinct & nonoverlapping)
 for (i=0; i<100; i=i+1) {
  A[i+1] = A[i] + C[i];    /* S1 */
  B[i+1] = B[i] + A[i+1];  /* S2 */
 }

 1. S2 uses the value, A[i+1], computed by S1 in the same iteration. 

 2. S1 uses a value computed by S1 in an earlier iteration, since iteration i computes 
A[i+1] which is read in iteration i+1. The same is true of S2 for B[i] and B[i+1]. 

    This is a “loop-carried dependence”: between iterations

•For our prior example, each iteration was distinct
 In this case, iterations can’t be executed in parallel?
 loop-carried dependencies: prevent instruction reordering after unrolling as we 

did in an earlier example

23

Five (5) Loop Unrolling Decisions
• Requires understanding how one instruction depends on another 

and how the instructions can be changed or reordered given the 
dependences. 

• Main steps:
1. Determine loop unrolling useful by finding that loop iterations were independent
2. Use different registers to avoid unnecessary constraints forced by using same 

registers for different computations 
3. Eliminate the extra test and branch instructions and adjust the loop termination 

and iteration code
4. Determine that loads and stores in unrolled loop can be interchanged by observing 

that loads and stores from different iterations are independent 
• Transformation requires analyzing memory addresses and finding that they do not refer to the same 

address

5. Schedule the code, preserving any dependences needed to yield the same result as 
the original code 24
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Three (3) Limits to Loop Unrolling
1. Decrease in amount of overhead amortized with each 

extra unrolling
• Amdahl’s Law

2. Growth in code size 
• For larger loops, concern it increases the instruction cache miss rate

3. Register pressure: potential shortfall in registers created 
by aggressive unrolling and scheduling
• If not be possible to allocate all live values to registers, may lose some or all of its 

advantage

• Loop unrolling reduces impact of branches on pipeline!
• Another way is branch prediction (see next slides)

25
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Static Branch Prediction
• To reorder code around branches, we need to predict branch statically when 

compiling

• Simplest scheme is to predict a branch as taken
• Average misprediction = untaken branch frequency = 34% SPEC

More accurate scheme 
predicts branches using 
profile information collected 
from earlier runs, and 
modify prediction based on 
last run

Integer Floating Point

27
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Dynamic Branch Prediction
“learning based on past behavior”

Temporal correlation

The way a branch resolves may be a good predictor 

of the way it will resolve at the next execution

Spatial correlation 

Several branches may resolve in a highly correlated 

manner (a preferred path of execution)

29

Dynamic Branch Prediction
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FSM of the Simplest Dynamic BP

31

Example using 1-bit branch history table

Pred

Actual

32
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2-bit Saturating Up/Down Counter Predictor

33

2-bit Counter Predictor (Another Scheme)
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Example using 2-bit up/down counter

Pred

Actual

35

• BHT is a table of “Predictors”
– 2-bit, saturating counters indexed by 

PC address of Branch

• In Fetch phase of branch:
– Predictor from BHT used to make 

prediction

• When branch completes: 
– Update corresponding Predictor

Predictor 0

Predictor 127

Predictor 1

•
•
•

T

T

NT

N

T

N

N

T* T*N

N*N*T

Branch History Table (BHT)

Branch Address; PC

2
k

K-bits
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• Mispredict because either:
– Wrong guess for that branch

– Got branch history of wrong branch when index the table

• 4096 entry table:

BHT Accuracy

37

Advanced Techniques: 
1. Correlated Branch Prediction (2-level Predictors)

•Hypothesis: recent branches are correlated; that is, behavior of 
recently executed branches affects prediction of current branch
•Keep track of the behavior of previous branches, and use that to 

predict the behavior of the current branch
• Idea: record m most recently executed branches (represents a 

path through the program) as taken or not taken, and use that 
pattern to select the proper n-bit branch history table
• In general, (m,n) predictor means record last m branches to select 

between 2m history tables, each with n-bit counters
 Thus, old 2-bit BHT is a (0,2) predictor

•Global Branch History:  m-bit shift register keeping T/NT status of 
last m branches

38
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Correlated Branch Predictor

39

Correlating Branches
• Again, the idea is: taken/not taken 

of recently executed branches is 
related to behavior of next branch 
(as well as the history of that branch 
behavior)

• Then, behavior of recent branches 
selects between, say, 2 predictions 
of next branch, updating just that 
prediction 

• Example: (1,1) predictor
– 1-bit global, 1-bit local

Branch address (4 bits)

1-bit per branch 

local predictors

Prediction

1-bit global 

branch history

(0 = not taken)
40
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• General form: (m, n) predictor

• m bits for global history, n bits for 
local history

• Records correlation between m+1 
branches

• Simple implementation: global 
history can be stored in a shift 
register

• Example: (2,2) predictor
– 2-bit global, 2-bit local

Branch address (4 bits)

2-bits per branch 

local predictors

Prediction

2-bit global 

branch history

(01 = not taken, then taken)

Correlating Branches
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Advanced Techniques:
2. Tournament Predictors

• Motivation for correlating branch predictors:
– 2-bit local predictor failed on important branches 

– by adding global information, performance improved

• Tournament predictors: use two predictors, 1 based 
on global information and 1 based on local 
information, and combine with a selector

• Hopes to select right predictor for right branch (or 
right context of branch)

43

Tournament Predictor in Alpha 21264
• Local predictor: consists of a 2-level predictor: 

– Top level: A local history table consisting of 1024 10-bit entries; each 10-bit entry 
corresponds to the most recent 10 branch outcomes for the entry. 10-bit history allows 
patterns of 10 branches to be discovered and predicted 

– Next level: Selected entry from the local history table is used to index a table of 1K 
entries consisting a 3-bit saturating counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!

    (~180K transistors)

1K  10 
bits

1K 
 3 
bits

44
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• 4K 2-bit counters to choose from among a global predictor and a local predictor

• Global predictor: also has 4K entries and is indexed by the history of the last 12 
branches; each entry in the global predictor is a standard 2-bit predictor

– 12-bit pattern: 

» ith bit is 0 => ith prior branch not taken; 

» ith bit is 1 => ith prior branch taken; 

00,10,11

00,11

10

Use 1 Use 2

Use 2Use 1

00,01,11

00,11

10

10 01
01

01

4K  2 
bits

1

3

2

12

...

Tournament Predictor in Alpha 21264

45

Tournament Predictor in Alpha 21264
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Accuracy vs. Size (SPEC89)

47

Dynamic Branch Prediction Summary
•Prediction becoming important part of execution

•Branch History Table: 2 bits for loop accuracy

•Correlation: recently executed branches correlated with 
next branch
 Either different branches,
 Or different executions of same branches 

•Tournament predictors take insight to next level, by using 
multiple predictors 
 Usually one based on global information and one based on local 

information, and combining them with a selector
 Tournament predictors using  30K bits were in processors like the Power5 

and Pentium 4 (circa 2006)
48

47

48



25

Outline

•ILP, Loop Unrolling

•Static Branch Prediction

•Dynamic Branch Prediction

•Overcoming Data Hazards with Dynamic Scheduling

•Tomasulo Algorithm

•Conclusion

49

Dynamic Scheduling
•Dynamic scheduling - Hardware rearranges the instruction 

execution to reduce stalls while maintaining data flow and 
exception behavior
•It handles cases when dependences unknown at compile 

time 
•It allows the processor to tolerate unpredictable delays such 

as cache misses, by executing other code while waiting for 
the miss to resolve
•It allows code that is compiled for one pipeline to run 

efficiently on a different pipeline 
•It simplifies the compiler 
•Hardware speculation - Technique with significant 

performance advantages, builds on dynamic scheduling 50
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HW Schemes: Instruction Parallelism
•Key idea: Allow instructions behind stall to proceed

 DIVD F0,F2,F4
 ADDD F10,F0,F8
 SUBD F12,F8,F14

•Enables out-of-order execution and allows out-of-order completion 
(e.g., SUBD)
•In a dynamically scheduled pipeline, all instructions still pass 

through issue stage in order (in-order issue)
•Will distinguish when an instruction begins execution and when it 

completes execution; between 2 times, the instruction is in 
execution

51

Dynamic Scheduling – Splitting the ID Stage

•Simple pipeline had 1 stage to check both structural and 
data hazards: Instruction Decode (ID), also called 
Instruction Issue

•To allow out-of-order execution, split the ID pipe stage of 
simple 5-stage pipeline into 2 stages: 

 Issue - Decode instructions, check for structural hazards 

 Read operands - Wait until no data hazards, then read operands 

52
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A Dynamic Algorithm: Tomasulo’s Algorithm 

•For IBM 360/91 (before caches!)
 Long memory latency

•Goal: High Performance without special compilers
•Small number of floating-point registers (4 in 360) prevented 

interesting compiler scheduling of operations
 This led Tomasulo to try to figure out how to get more effective registers - 

Renaming in hardware! 

•Why Study 1966 Computer? 
•The descendants of this have flourished!

 Alpha 21264, Pentium 4, AMD Opteron, Power 5, Intel Core i3/i5/i7 …
53

Tomasulo Algorithm: Key Ideas
• Registers in instructions replaced by values or pointers to reservation 

stations (RS); called register renaming; 
 Register renaming in hardware: avoids WAR, WAW hazards
 More reservation stations than registers, so, can do optimizations compilers can 

not

• Tracks when operands for instructions are available to minimize RAW 
hazards

• Control & buffers distributed with Function Units (FU)
 FU buffers called reservation stations; have instructions that have been issued 

but pending operands or wait for available FU

• Results to FU from RS, not through registers, over Common Data Bus that 
broadcasts results to all FUs
 Avoids RAW hazards by executing an instruction only when its operands are 

available

• Load and Stores treated as FUs with RSs as well 54
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Structure of Tomasulo-based Processor

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem. FP Registers

Reservation 
Stations

Common Data Bus (CDB)

To Mem.

FP Op
Queue

Load 
Buffers

Store 
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

From Instr. Unit

Address Unit

LD/ST
Operations

55

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

 Store buffer has V field, result to be stored

Qj, Qk: Reservation stations producing source registers (value to be 
written)
 Note: Qj,Qk=0 => ready

 Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy
A(ddress): holds information for the memory address calculation for a load 

or store 

Register result status - Indicates which functional unit will write each 
register, if one exists. Blank when no pending instructions that will write 
that register. 56
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Basic Functions of Some Elements
• Load buffers have 3 functions:

1. hold components of effective address until it is computed
2. track outstanding loads that are waiting on the memory
3. hold the results of the completed loads that are waiting for the CDB

• Store buffers have 3 functions:
1. hold components of effective address until it is computed
2. hold destination memory addresses of outstanding stores that are waiting 
for the data value to store
3. hold address and value to store until memory unit is available

• All results from FP units or the load unit are put on CDB, which goes to:
 the FP registers
 the reservation stations, and 
 the store buffers

57

Three Stages of Tomasulo Algorithm
1.Issue—get instruction from FP Op Queue

 If reservation station free (no structural hazard), control issues instr & sends operands (renames 
registers)

 Stall issue if structural hazard 

2.Execute—operate on operands (EX)
 When both operands ready then execute; if not ready, watch Common Data Bus for result

3.Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting units; mark reservation station available

•Normal data bus: data + destination (“go to” bus)
•Common data bus: data + source  (“come from” bus)

 64 bits of data + 4 bits of Functional Unit source address
 Write if matches expected Functional Unit (produces result)
 Does the broadcast
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Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 Load1 No

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
0 FU

Clock cycle 
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

59

Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
1 FU Load1

60
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Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
2 FU Load2 Load1

Note: Can have multiple loads outstanding 61

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation Stations; MULT issued

• Load1 completing; what is waiting for Load1? 62
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Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
4 FU Mult1 Load2 M(A1) Add1

Load2 completing; what is waiting for Load2? 
63

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)

Add2 No

Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
5 FU Mult1 M(A2) M(A1) Add1 Mult2

Timer starts down for Add1, Mult1 64
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Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
6 FU Mult1 M(A2) Add2 Add1 Mult2

Issue ADDD here despite name dependency on F6? 65

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
7 FU Mult1 M(A2) Add2 Add1 Mult2

Add1 (SUBD) completing; what is waiting for it? 
66
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Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

2 Add2 Yes ADDD (M-M) M(A2)

Add3 No

7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
8 FU Mult1 M(A2) Add2 (M-M) Mult2

67

Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

1 Add2 Yes ADDD (M-M) M(A2)

Add3 No

6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
9 FU Mult1 M(A2) Add2 (M-M) Mult2
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Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

0 Add2 Yes ADDD (M-M) M(A2)

Add3 No

5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
10 FU Mult1 M(A2) Add2 (M-M) Mult2

Add2 (ADDD) completing; what is waiting for it? 
69

Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
11 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Write result of ADDD here

• All quick instructions complete in this cycle! 70
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Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
12 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

71

Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
13 FU Mult1 M(A2) (M-M+M)(M-M) Mult2
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Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
14 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

73

Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
15 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

Mult1 (MULTD) completing; what is waiting for it? 
74

73

74



38

Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
16 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

Just waiting for Mult2 (DIVD) to complete
75

Faster than light computation
(skip a couple of cycles…)
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Tomasulo Example Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
55 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

77

Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

Mult2 (DIVD) is completing; what is waiting for it? 
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Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56 57

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Result

Once again: In-order issue, out-of-order execution and out-of-order completion.
79

Why can Tomasulo Overlap Iterations of Loops?

•Register renaming
 Provided by reservation stations (there should be many of them)
 Multiple iterations use different physical destinations for registers 

(dynamic loop unrolling) 
 Name dependences are eliminated by register renaming

•Reservation stations 
 Permit instruction issue to advance past integer control flow operations 

(provided branches predicted accurately)
 Also buffer old values of registers - totally avoiding the WAR stall 

•Other perspective: Tomasulo building data flow 
dependency graph on the fly!
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Tomasulo’s Scheme offers 2 Major Advantages

1.Distribution of the hazard detection logic
 Distributed reservation stations and the CDB

 If multiple instructions waiting on single result, & each instruction has 
other operand, then instructions can be released simultaneously by 
broadcast on CDB 

 If a centralized register file were used, the units would have to read their 
results from the registers when register buses are available

2.Elimination of stalls for WAW and WAR hazards

81

Tomasulo Drawbacks

•Complexity
 Design delays of 360/91, MIPS 10000, Alpha 21264, IBM PPC 620

•Performance limited by Common Data Bus
 Each CDB must go to multiple functional units
 high capacitance (think long delays), high wiring density
 Number of functional units that can complete per cycle limited to one!

• Multiple CDBs  more FU logic for parallel stores

82
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Conclusion
•Leverage Implicit Parallelism for Performance

 Instruction Level Parallelism (ILP)

•Loop unrolling by compiler to increase amount of ILP

•Branch prediction to increase amount of ILP

•HW Dynamic Scheduling 
 Works when cannot know dependence at compile time

 Can hide L1 cache misses

 Code for one machine runs well on another

83

Conclusion 
•Reservations stations: renaming to larger set of registers + 

buffering source operands
 Prevents registers as bottleneck
 Avoids WAR, WAW hazards
 Allows loop unrolling in HW (provided branches predicted accurately)

•Not limited to basic blocks 
(integer units gets ahead, beyond branches)
•Helps cache misses as well
•Lasting Contributions

 Dynamic scheduling
 Register renaming
 Load/store disambiguation

•360/91 descendants are Intel Pentium 4, IBM Power 5, AMD 
Athlon/Opteron, Intel i3/i5/i7, …
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