COEN-4730/EECE-5730 Computer Architecture

Lecture 3
Review of Caches and Virtual
Memory

Cristinel Ababei
Dept. of Electrical and Computer Engineering

m MARQUETTE

MI UNIVERSITY

BE THE DIFFERENCE.

Credits: Slides adapted from presentations of Pasricha, Kubiatowicz, Patterson, Mutlu, Elsevier

Outline

e Memory hierarchy, example, terminology
e 4 questions

® 6 basic cache optimizations

e Virtual memory

e Summary

Since 1980, CPU

has outpaced DRAM ...

Performance
(1/latency) CPU
1000 v 60% per yr
2Xin 1.5yrs
200 \
Gap grew 50% per
year
A0 / DRAM
. 9% per yr
——t—t—t 2X|n10yrs
A9%0 920 2000
Year

eHow did architects address this gap?

° Put small, fast “cache” memories between CPU and DRAM

° Create a “memory hierarchy”

Memory Hierarchy

eEverything is a cache for something else

eTake advantage of the principle of locality to:

° Present as much memory as possible in cheapest technology
° Provide access at speed offered by fastest technology

Processor

Control

Datapathl

1s

Speed (ns):

Size (bytes): 100s Ks-Ms

10s-100s

100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Ms Gs Ts

Example of Memory Hierarchy: Apple iMac G5

Managed Managed Managed by OS,

by compiler by hardware hardware,
/ / \\ appllcatlon
Reg L1 Inst @ L1 Data DRAM DISk

Size 1K 64K 32K 512K | 256M | 80G

Latency —
1, 3, 3, 11, 88, 107, —

Cycles, 06ns | 1.9ns | 19ns 6.9ns @ 55ns 12ms IMac G5

Time 1.6 GHz
Goal: lllusion of large, fast, cheap memory

Let programs address a memory space that scales to the disk
size, at a speed that is usually as fast as register access. 5

iMac’s PowerPC 970: all caches on-chip
L1 (64K Instruction) | | | |

si9)sibay

512K
L2

r (1
s wnsg N
1111 I
[T T

Memory Hierarchy: Terminology

e Hit: data appears in some block in the upper level (example: Block X)

° Hit Rate: Fraction of memory access found in the upper level
° Hit Time: Time to access the upper level which consists of:
Time to determine hit/miss + Memory access time

e Vliss: data needs to be retrieved from a block in the lower level (Block Y)

° Miss Rate =1 - (Hit Rate)
° Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block to the processor

e Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Leve
Memory

CPU Upper Level

To Processor | Memory
BIK X >
BIk Y

Registers | | _Erom Processor .

Program Locality

= Programs access a small proportion of their address space at
any time

= Temporal locality
= Items accessed recently are likely to be accessed again soon

= E.g., instructionsin aloop

m Spatial locality
= Items near those accessed recently are likely to be accessed soon

= E.g., sequential instruction access, array data

Outline

e Memory hierarchy, example, terminology
e 4 questions

® 6 basic cache optimizations

e Virtual memory

e Summary

4 Questions for Memory Hierarchy

eQ1: Where can a block be placed in the upper level?
(Block placement)

eQ2: How is a block found if it is in the upper level?
(Block identification)

¢Q3: Which block should be replaced on a miss?
(Block replacement)

eQ4: What happens on a write?
(Write strategy)

10

10

01: Where can a block be placed in the upper level?
eBlock 12 placed in 8 block cache:

° Direct mapped, 2-way set associative (SA), Fully associative
° S.A. Mapping = Block Number MODULO Number Sets

Direct Mapped 2-Way Set Associative Fully associative

(12mod8)=4 (12mod4)=0 (Full Mapped)
01234567 01234567 01234567
Cache
1111111111222222222233
01234567890123456789012345678901
Memory

11

11

Direct Mapped Cache

e Location determined by address

e Direct mapped: only one choice

— (Block address) modulo (#Blocks in cache)
Cache

000
001
010
011
100
101
110

111

= #Blocks is a power of 2
= Use low-order address bits

N

00001

00101

01001

01101 10001
Memory

10101

11001 11101

12

12

Sources of Cache Misses

e Compulsory (cold start or process migration, first reference): first access
to a block

° “Cold” fact of life: not a whole lot you can do about it
° Note: If you are going to run “billions” of instruction, Compulsory Misses are insignificant

e Capacity:
° Cache cannot contain all blocks accessed by the program

° Solution: increase cache size

e Conflict (collision):
° Multiple memory locations mapped to the same cache location
° Solution 1: increase cache size
° Solution 2: increase associativity

e Coherence (invalidation): other process (e.g., I/0O) updates memary

13

Q2: How is a block found if it is in the upper level?

Block is minimum quantum of caching

— Data select field used to select data within block

Index Used to Lookup Candidates in Cache
— Index identifies the set

How do we know which particular block is stored in a cache location?
— Store block address as well as the data
— Actually, only need the high-order bits
— Called the tag
— If no candidates match, then declare cache miss

What if there is no data in a location?
— Valid bit: 1 = present, 0 = not present
— Initially O 14

14

Address Subdivision

Address (showing bit positions)
3130 --- 131211---2 10

B
oﬁseet
| | loieed
Hit 20 Jwo
Tag
Index Data
Index Valid Tag Data
0
1
2
1021
1022
1023
J20 432
(=
15
15
[] []
[]
Review: Direct Mapped Cache
e Direct Mapped 2N byte cache:
° The uppermost (32 - N) bits are always the Cache Tag
° The lowest M bits are the Byte Select (Block Size = 2M)
e Example: 1 KB Direct Mapped Cache with 32 B Blocks
° Index chooses potential block
° Tag checked to verify block
° Byte select chooses byte within block
31 10 9 54 0
Ex: 0x50 Ex: 0x01 Ex: 0x00
Vali Bit Cache Tag Cache Data
heed 2] Byte . [Bydo. 10
| * | Byte 33 j+—
: RsmsmsssmssEREREANS 1'2
| 3
: Byte 1023 *+ Byte 992 [31 16

16

Review: Set Associative (SA) Cache

e N-way set associative: N entries (blocks) per Cache Index
° N direct mapped caches operate in parallel
e Example: Two-way Set Associative cache
° Cache Index selects a “set” from the cache
° Two tags in the set are compared to input in parallel
° Data is selected based on the tag result
9 8 54 0

31

Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

17

17

Review: Fully Associative Cache

e Fully Associative: Every cache entry can hold/store any block/line
° Address does not include a cache index
® Compare Cache Tags of all Cache Entries in Parallel

e Example: Block Size = 32 B blocks

° We need N 27-bit comparators

° Still have byte select to choose from within block
4 0

31
Ex: 0x01

Cache Tag Valid Bit Cache Data I

| ||Byte31] ** Byte 0
Byte 63| ** | Byte 33| Byte 32

18

Q3: Which block should be replaced on a miss?

* Easy for Direct Mapped

* Set Associative or Fully Associative:

* LRU (Least Recently Used): Appealing, but hard to implement for high associativity
* Random: Easy, but — how well does it work?
* Miss rates:

[pssoc] 2way [away [Sway |
Size LRU Ran LRU Ran LRU Ran
16K 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64K 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256K 1.15% | 1.17% | 1.13% | 1.13% | 1.12% | 1.12%

19
19
[]
[]
Q4: What happens on a Write?
Write-Through Write-Back
* Write data only to
Data written to cache block the cache block
Policy also written to lower-level | © Update lower level
memory when a block falls
out of the cache
Debug Easy Hard
Do read misses
produce writes? No Yes
Do repeated writes
make it to lower Yes No
level? 20
20

10

Write Buffers for Write-Through Caches

—»| Cache |e—| Lower
Processor | Level
Memory
rite Buffe
. 7
Holds data awaiting write-through to lower-level memory

Q. Why a write buffer? A. So CPU doesn’t stall

Q. Why a buffer, why not just A. Bursts of writes are

one register? common

Q. Are Read After Write A. Yes! Drain buffer before next

(RAW) hazards an issue for read, or check write buffers for

write buffer? match on reads

21
21
Outline
e Memory hierarchy, example, terminology
e 4 questions
¢ 6 basic cache optimizations
e VVirtual memory
e Summary
22
22

11

6 Basic Cache Optimizations
e Reducing Miss Rate

1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

e Reducing Miss Penalty

4. Multilevel Caches to reduce miss penalty

e Reducing Hit Time
5. Giving Reads priority over Writes
6. Avoid address translation during indexing of Cache

23

23

Outline

e Memory hierarchy, example, terminology
e 4 questions

® 6 basic cache optimizations

e Virtual memory

e Summary

24

24

12

Virtual Memory (VM)
e A memory management approach
— Programmer views memory as large address space (larger than physical
memory) without concerns about the amount of physical memory or memory
management
e Main idea: Use main (disk)
storage
— Managed jointly by CPU and the operating system (OS)
— VM “block” is called a ; Typical size of a page: 1-8K
— VM translation “miss” is called a
e Programs share main memory
— Each gets a private holding its frequently used code and data
— Protected from other programs
e CPU and OS translate virtual addresses to physical addresses
25
25
Cache and Virtual Memory
Data ' Data ' >
Address Logical a(i‘dress. N Ph\./sical address I\/‘/ /0
§ 4 Memory ‘g 4
<‘ management ‘
% unit || e
cPu] I
~ b 4
Cache Main Disk
memory memory drive
26
26

13

Memory Management Unit (MMU) for Paging

Page Table for A .
Running Valid ;hg;f;;al
Process A Frame# Bit Frame Y Process A
o 4 1 Number page 0
L - 0 0 | page20fB page 1
CPU 20 5 1 I | page3of A HTZSBB page 2
3 1 1 2 | pageSof A page 1 page 3
4 - 0 3 | page5of B page 5 page 4
2 1 4 | page 0of A DA 3 page 5
6 - 0 5 | page2of A page page 6
6 | page4ofB page 4
page 5
rame# offset page 6
-
Physical Addr.

Notes:

* Virtual (Logical) memory is organized into Pages (or virtual page).
* Physical memory is organized into Page Frames (or physical page).
* The size of Page matches a Page Frame. 27

27

Virtual Address to Physical Address

e |n virtual memory, blocks of memory (called pages)
are mapped from one set of addresses (called _
virtual addresses) to another set (called physical e
addresses). 313029 cevevnennennenannnns 1514131211 1098 -woveeeeees 3210

e The processor generates virtual addresses while | b e | Pasote
the memory is accessed using physical addresses.
Both the virtual memory and the physical memory
are broken into pages, so that a virtual page is (Taion)
mapped to a physical page.

e It is possible for a virtual page to be absent from S 5141312111088 ko 3210
main memory and not be mapped to a physical
address; in that case, the page resides on disk. ’

e Physical pages can be shared by having two virtual Physical address
addresses point to the same pfg/sical address. This
capability is used to allow two different programs
to share data or code.

Physical page number | Page offset

28

28

14

Translation Using a Page Table (PT)
|

Page table reqgister ‘

Virtual address
31 30 29 28 27--crcremeiinniiinnnes 1514 1312111098 3210

eThe page table is indexed | v e | P |
with the virtual page

number to obtain the
corresponding portion of

the physical address

Page table

18
If 0 then page is not
present in memory
20 28 27 i, .15 14 1312 11 109 843210
Physical page number Page offset
Physical address 29

29

Mapping Pages to Storage

Virtual page
number
| Page table
Physical page or Physical memory
Valid disk address

Disk storage

i

30

30

Storage of Page Tables Issues

e|f in physical memory, each memory reference in
the program results in 2 memory accesses:

° One for page table entry
° Another to perform desired memory access

eSolution: TLB (Translation Lookaside Buffer) — small
cache to hold PT entries

31

31

Translation Lookaside Buffers (TLB)

e Cache applied to address translations
e Fully Associative, Set Associative, or Direct Mapped

hit]
VA PA miss
_’ > .
CPU Cache MMaln
_ ¥| Memory

Translation miss hit -
witha TLB : 1 ’l Phe -

Trans- |4 -

lation

[E— data

32

32

16

Fast Translation Using a TLB

Virtual page Physical page
number Valid Dirty Ref Tag address

[
101 by
} } 1 .~ Physical memory
1101 ~
ojofo
101 hal

Page table

Physical page
Valid Dirty Ref or disk address

101 s

1/0][0 L :

TToTo — Disk storage

K s

oJoJo -— -

101 « 7

1[0][1 el

0700 |
s I
Cd

0|00 o~

1111 v 33

33

Putting it All Together: TLB, Page Table, Cache,
Main Memory

CPU generates virtual addresa

Page| Offset

s page
table entry >, Yo©_ (Now have frame)

- Y TLB?
Use P as index
into page table

Is Pin Yes (Now have iramo) I
s block
<) foe- oW > | Update TL8 > cache?

No v

bvesin

Read page from dlsk
v Update Cacha'

Transfer P =
into memory
Access data L

v
Fnd victim /
memOfY page and write
full? back to disk

| Overwnte victim pagé
with new page, P

Update page table

Update TLB

Restart access

34

17

Virtual address.
B1 20 2O -eereeesesm e 1413 12 11 10 9-ovveee 3210
| Virtual page number ‘ Page offsel ‘
[20 .‘ iz
Valid Dirty Tag Physical page number
e o
TLB hit =
20
Physical page number Page offset
Physical address. ok B
yte
Physical address tag | Cache index Iqﬂm offsat
:lwa 4]2
8
12 Data
Valid Tag
Cache
I |
=)
Cache hit
—
a2
35
Data

35

Three Advantages of Virtual Memory

1. Translation:

° Program can be given consistent view of memory, even though physical memory is
scrambled

° Makes multithreading reasonable
° Only the most important part of program (“Working Set”) must be in physical memory.
° Contiguous structures (like stacks) use only as much physical memory as necessary yet
still grow later.
2. Protection:
° Different threads (or processes) protected from each other.

° Different pages can be given special behavior
* (Read Only, Invisible to user programs, etc.)

° Kernel data protected from User programs
° Very important for protection from malicious programs

3. Sharing:

° Can map same physical page to multiple users (i.e., processes or programs)
(“Shared memory”

36

36

18

Outline

e Memory hierarchy, example, terminology
e 4 questions

® 6 basic cache optimizations

e Virtual memory

e Summary

37

37

Summary #1/3: The Cache Design Space
. . . . Cache Size
eSeveral interacting dimensions
° cache size
° block size
° associativity
° replacement policy
° write-through vs. write-back Block Size

eThe optimal choice is a compromise
° depends on access characteristics

» workload Bad
 use (l-cache, D-cache, TLB)
° depends on technology/cost Good | Facter Factor B

eSimplicity often wins Less More

Associativity

38

38

19

Summary #2/3: Caches

eThe Principle of Locality:

° Program access a relatively small portion of the address space at any
instant of time.
* Temporal Locality: Locality in Time
 Spatial Locality: Locality in Space

eThree Major Categories of Cache Misses:

° Compulsory Misses: sad facts of life. Example: cold start misses.
° Capacity Misses: increase cache size
° Conflict Misses: increase cache size and/or associativity.

e\Write Policy: Write Through vs. Write Back

eToday CPU time is a function of (ops, cache misses) vs.
just of (ops): affects Compilers, Data structures, and
Algorithms
39

39

Summary #3/3: Virtual Memory (VM)

e Page tables map virtual address to physical address
e TLBs are important for fast translation
e TLB misses are significant in processor performance

e Caches, TLBs, Virtual Memory all understood by examining how
they deal with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

e Today VM allows many processes to share single memory
without having to swap all processes to disk; today VM
protection is paramount!

40

40

20

	Slide 1: Lecture 3 Review of Caches and Virtual Memory
	Slide 2: Outline
	Slide 3: Since 1980, CPU has outpaced DRAM ...
	Slide 4: Memory Hierarchy
	Slide 5
	Slide 6
	Slide 7: Memory Hierarchy: Terminology
	Slide 8
	Slide 9: Outline
	Slide 10: 4 Questions for Memory Hierarchy
	Slide 11: Q1: Where can a block be placed in the upper level?
	Slide 12
	Slide 13: Sources of Cache Misses
	Slide 14
	Slide 15
	Slide 16: Review: Direct Mapped Cache
	Slide 17: Review: Set Associative (SA) Cache
	Slide 18: Review: Fully Associative Cache
	Slide 19: Q3: Which block should be replaced on a miss?
	Slide 20: Q4: What happens on a Write?
	Slide 21: Write Buffers for Write-Through Caches
	Slide 22: Outline
	Slide 23: 6 Basic Cache Optimizations
	Slide 24: Outline
	Slide 25
	Slide 26: Cache and Virtual Memory
	Slide 27: Memory Management Unit (MMU) for Paging
	Slide 28: Virtual Address to Physical Address
	Slide 29: Translation Using a Page Table (PT)
	Slide 30: Mapping Pages to Storage
	Slide 31: Storage of Page Tables Issues
	Slide 32
	Slide 33: Fast Translation Using a TLB
	Slide 34: Putting it All Together: TLB, Page Table, Cache, Main Memory
	Slide 35: TLB and Cache Interaction
	Slide 36: Three Advantages of Virtual Memory
	Slide 37: Outline
	Slide 38: Summary #1/3: The Cache Design Space
	Slide 39: Summary #2/3: Caches
	Slide 40: Summary #3/3: Virtual Memory (VM)

