

Bell's Law of Computer Classes

Definition

 Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry

Evolution

- ° mainframes (1960s)
- ° minicomputers (1970s); essentially replaced by clusters of PCs
- personal computers and workstations evolving into a network enabled by Local Area Networking or Ethernet (1980s)
- ° web browser client-server structures enabled by the Internet (1990s)
- ° cloud computing, e.g., Amazon Web Services or Microsoft's Azure (2000s)
- $^\circ\,$ small form-factor devices such as cell phones and other cell phone sized devices, e.g., Smartphones (c. 2000)
- ° Wireless Sensor Networks (WSN), Internet of Things (IoT) (c. >2005)

What is Computer Architecture?

Gap too large to bridge in one step

(but there are exceptions, e.g., magnetic compass)

Application						
Algorithm						
Programming Language						
Operating System/Virtual Machine						
Instruction Set Architecture (ISA)						
Microarchitecture						
Gates/Register-Transfer Level (RTL)						
Circuits						
Devices						
Physics						

At each abstraction layer, optimizations can be done to impact:

- --Performance
- --Power
- --Area
- --Cost
- --Reliability
- --Security

•••

In its broadest definition, **computer architecture** is the design of the abstraction layers that allow us to implement information processing **applications** efficiently using available **manufacturing technologies**

- 1950s to 1960s: Computer Architecture Course: Computer Arithmetic
- 1970s to mid 1980s: Computer Architecture Course: Instruction Set Design, especially ISA appropriate for compilers
- 1990s: Computer Architecture Course: Design of CPU, memory system, I/O system, Multiprocessors, Networks
- 2000s: Computer Architecture Course: Multi-core design, on-chip networking, parallel programming, power reduction, instruction level parallelism
- ~2013: Computer Architecture Course: Data and thread level parallelism? Self adapting systems? Security and reliability? Warehouse scale computing?

Outline

- •What is and what does a computer architect?
- •Classes of computers
- •Trends in technology
- Defining computer architecture
- •New definition of computer architecture

Crossroads: Conventional Wisdom in Comp. Arch. • Old Conventional Wisdom (CW): Power is free, Transistors expensive • New CW: "Power wall" Power expensive, Transistors free (Can put more on chip than can afford to turn on) Old CW: Sufficiently increasing Instruction Level Parallelism via compilers, innovation (Out-of-order, speculation, VLIW, ...) • New CW: "ILP wall" law of diminishing returns on more HW for ILP Old CW: Multiplies are slow, Memory access is fast New CW: "Memory wall" Memory slow, multiplies fast (200 clock cycles to DRAM memory, 4 clocks for multiply) Old CW: Uniprocessor performance 2X / 1.5 yrs • New CW: Power Wall + ILP Wall + Memory Wall = "Brick Wall" ^o Uniprocessor performance now 2X / 5(?) yrs Change in chip design - multiple cores: 2X processors per chip / ~2 years Over a second processors 23

Part 2: Computer Architecture – Design Principles and Analysis

CPU time	= Seconds	= Instru	ctions x	Cycles x	Seconds
	Program	Prog	ram	Instruction	Cycle
		Inst Count	CPI	Cycle time	
	Program	Х			
	Compiler	Х	(X)		
	Inst. Set.	Х	Х		-
	Organization		Х	Х	-
	Technology			Х	-

• CDC Wren I, 1983	• Seagate 373453, 200	3
• 3600 RPM	• 15000 RPM	(4X)
0.03 GBytes capacity	• 73.4 GBytes	(2500X)
 Tracks/Inch: 800 	• Tracks/Inch: 64,000	(80X)
• Bits/Inch: 9,550	• Bits/Inch: 533,000	(60X)
Three 5.25" platters	 Four 2.5" platters (in 3.5" form factor) 	
 Bandwidth: 0.6 MBytes/sec 	 Bandwidth: 86 MBytes/sec 	(140X)
 Latency: 48.3 ms 	• Latency: 5.7 ms	(<mark>8X</mark>)
Cache: none	Cache: 8 MBytes	

6 Reasons for "Latency Lags BandWidth" 1. Moore's Law helps BW more than latency Faster transistors, more transistors, more pins help Bandwidth 0.130 vs. 42 M xtors MPU Transistors: (300X) **DRAM** Transistors: 0.064 vs. 256 M xtors (4000X) MPU Pins: 68 vs. 423 pins (6X) . DRAM Pins: 16 vs. 66 pins (4X) Smaller, faster transistors but latency has not reduced as dramatically with successive generations Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X) MPU Die Size: 35 vs. 204 mm² (ratio sqrt \Rightarrow 2X) DRAM Die Size: 47 vs. 217 mm² (ratio sqrt \Rightarrow 2X) • 44

6 Reasons for "Latency Lags BandWidth"

2. Distance limits latency

- Size of DRAM block \Rightarrow long bit and word lines \Rightarrow most of DRAM access time
- 1. & 2. explains linear latency vs. square BW

3. Bandwidth easier to sell ("bigger=better")

- E.g., 10 Gbits/s Ethernet ("10 Gig") vs. 10 μsec latency Ethernet
- 4400 MB/s DIMM ("PC4400") vs. 50 ns latency
- Even if it is just marketing, customers are now trained
- Since bandwidth sells, more resources thrown at bandwidth, which further tips the balance

6 Reasons for "Latency Lags BandWid	lth"
 5. Bandwidth hurts latency Queues help Bandwidth, hurt Latency (Queuing Theory) Adding chips to widen a memory module increases Bandwidth k fan-out on address lines may increase Latency 	out higher
 Operating System overhead hurts Latency I than Bandwidth 	more
 Long messages amortize overhead; overhead bigger part of short messages It takes longer to create and to send a long message, which is needed instead of a short message to lessen average cost per data byte of fixed size message overhead 	47

<section-header> Derformance: What to Measure Sually rely on benchmarks vs. real workloads To increase predictability, collections of benchmark applications, called benchmark suites, are popular SPECPU: popular desktop benchmark suite Predivide the stream of th

CINT2006 for Opteron X4 2356

Name	Description	IC×10 ⁹	CPI	Tc (ns)	Exec time	Ref time	SPECratio
perl	Interpreted string processing	2,118	0.75	0.4	637	9,777	15.3
bzip2	Block-sorting compression	2,389	0.85	0.4	817	9,650	11.8
gcc	GNU C Compiler	1,050	1.72	0.4	24	8,050	11.1
mcf	Combinatorial optimization	336	10.00	0.4	1,345	9,120	6.8
go	Go game (AI)	1,658	1.09	0.4	721	10,490	14.6
hmmer	Search gene sequence	2,783	0.80	0.4	890	9,330	10.5
sjeng	Chess game (AI)	2,176	0.96	0.4	37	12,100	14.5
libquantum	Quantum computer simulation	1,623	1.61	0.4	1,047	20,720	19.8
h264avc	Video compression	3,102	0.80	0.4	993	22,130	22.3
omnetpp	Discrete event simulation	587	2.94	0.4	690	6,250	9.1
astar	Games/path finding	1,082	1.79	0.4	773	7,020	9.1
xalancbmk	XML parsing	1,058	2.70	0.4	1,143	6,900	6.0
Geometric mean							11.7

How to Mislead with Performance Reports

- 1. Select pieces of workload that work well on your design, ignore others
- 2. Use unrealistic data set sizes for application (too big or too small)
- 3. Report throughput numbers for a latency benchmark
- 4. Report latency numbers for a throughput benchmark
- 5. Report performance on a kernel and claim it represents an entire application
- 6. Use 16-bit fixed-point arithmetic (because it's fastest on your system) even though application requires 64-bit floating-point arithmetic
- 7. Use a less efficient algorithm on the competing machine
- 8. Report speedup for an inefficient algorithm (bubblesort)
- 9. Compare hand-optimized assembly code with unoptimized C code
- 10. Compare your design using next year's technology against competitor's year old design (1% performance improvement per week)
- 11. Ignore the relative cost of the systems being compared
- 12. Report averages and not individual results
- 13. Report speedup over unspecified base system, not absolute times
- 14. Report efficiency not absolute times
- 15. Report MFLOPS not absolute times (use inefficient algorithm) [David Bailey, "Twelve ways to fool the masses when giving performance results for parallel supercomputers"]

