
1

Lecture 1
Introduction

Cristinel Ababei
Dept. of Electrical and Computer Engineering

COEN-4730/EECE-5730 Computer Architecture

1Credits: Slides adapted from presentations of Sudeep Pasricha and others: Kubiatowicz, Patterson, Mutlu, Elsevier

Admin

•Discussion of Syllabus

•Grading policies, attendance, HW, etc.

•Course websites:
D2L:

• https://d2l.mu.edu/d2l/login

Public:
• http://dejazzer.com/coen4730/index.html

2

1

2

https://d2l.mu.edu/d2l/login
http://dejazzer.com/coen4730/index.html

2

Outline

•What is and what does a computer architect?

•Classes of computers

•Trends in technology

•Defining computer architecture

•New definition of computer architecture

3

Why Study Computer Architecture?
•Understand why computers work the way they do

•Make computers faster, cheaper, smaller, more reliable
 By exploiting architectural advances and changes in underlying technology/circuits

•Adapt the computing stack to technology trends
 Innovation in software is built into trends and changes in computer architecture

•Enable new applications
 Life-like 3D visualization 20 years ago?
 Virtual/augmented reality?
 High performance mobile computing?

3

4

3

What is a Computer Architect?

5

Computing Devices Then…

Electronic Delay Storage Automatic Calculator (EDSAC) - early British computer

University of Cambridge, UK, 1949

Considered to be one of the first stored program electronic computers 6

5

6

4

…Computing Systems Today

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Clusters

Massive Cluster

Gigabit Ethernet

Databases
Information Collection
Remote Storage
Online Games
Commerce…

•The world is a large parallel system
 Microprocessors in everything
 Vast infrastructure behind them

RobotsRouters

Cars

Sensor
Nets

R
ef

ri
ge

ra
to

rs

7

Classes of Computers

•Embedded systems; Personal Mobile Devices (PMD)
 e.g., smart phones, tablet computers
 Emphasis on energy efficiency, cost, and real-time

•Desktop Computing
 Emphasis on price-performance

•Servers
 Emphasis on availability, scalability, throughput

•Clusters/Datacenters/Warehouse Scale Computers
 Used for “Software as a Service (SaaS)”
 Emphasis on availability and price-performance
 Sub-class: Supercomputers, emphasis: floating-point performance and fast internal networks

8

7

8

5

Bell's Law of Computer Classes
•Definition

 Roughly every decade a new, lower priced computer class forms based on a
new programming platform, network, and interface resulting in new usage and
the establishment of a new industry

•Evolution
 mainframes (1960s)
 minicomputers (1970s); essentially replaced by clusters of PCs
 personal computers and workstations evolving into a network enabled by Local

Area Networking or Ethernet (1980s)
 web browser client-server structures enabled by the Internet (1990s)
 cloud computing, e.g., Amazon Web Services or Microsoft's Azure (2000s)
 small form-factor devices such as cell phones and other cell phone sized

devices, e.g., Smartphones (c. 2000)
 Wireless Sensor Networks (WSN), Internet of Things (IoT) (c. >2005)

9

Bell’s Law – new class per decade

year

lo
g

(p
eo

p
le

 p
er

 c
o

m
p

u
te

r)

streaming
information
to/from physical
world

Number Crunching
Data Storage

productivity
interactive

• Enabled by technological opportunities
• Smaller, more numerous and more intimately connected
• Brings in a new kind of application
• Used in many ways not previously imagined

10

9

10

6

2023

12

Single Processor Performance

RISC

Move to multi-processor

What has been the main method to improve performance?

11

12

7

13

Clock Frequency

14

Power (density)
Source: Intel

• Intel 80386 consumed ~2 W

• 3.3 GHz Intel Core i7 consumes 130 W

• Heat must be dissipated from 1.5x1.5 cm chip

• This is the limit of what can be cooled by air

Power-consumption = Dynamic-power + Static-power
 (Includes due to short-circuit) (Due to Leakage)

13

14

8

Bottom-line: Technology constantly on the move!
•Num of transistors not limiting

factor
 Currently ~19 billion transistors/chip
 Problems:

• Too much Power, Heat, Latency
• Not enough Parallelism

•3-dimensional chip technology?
 Sandwiches of silicon
 “Through-Silicon-Vias” for comm.

•On-chip optical connections?
 Power savings for large packets

•Apple A17-Pro chip in iPhone 15
 6=2 (high perf.)+4 (high-efficiency)

cores/chip
 3 nm
 19 billion transistors

15

16

Manycore Chips: the future is here!
• Intel 80-core multicore chip (Feb.2007)

– 80 simple cores

– Two FP-engines / core

– Mesh-like network

– 100 million transistors

– 65nm feature size

• Intel Single-Chip Cloud Computer (Aug.2010)
– 24 “tiles”

– 24-router mesh network
with 256 GB/s bisection

– 4 integrated DDR3 memory controllers

– Hardware support for message-passing

• “Manycore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio

– Use 1 for word processor, 1 for browser

– 76 for virus checking?

Intel 80-core chip
https://en.wikichip.org/wiki/intel
/microarchitectures/polaris

15

16

9

Example: Intel Sandy Bridge (i3,i5,i7; 2011-)

17

Example: AMD Ryzen (2017-)

18

17

18

10

IBM Blue Gene A2 processor (2010-)

19

20

What is Computer Architecture?

Gap too large to bridge
in one step

(but there are
exceptions, e.g.,
magnetic compass)

In its broadest definition, computer architecture is the design of the abstraction layers that allow us to
implement information processing applications efficiently using available manufacturing technologies

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machine

Microarchitecture

Devices

Programming Language

Circuits

Physics

At each abstraction layer,
optimizations can be done
to impact:
--Performance
--Power
--Area
--Cost
--Reliability
--Security
…

19

20

11

21

Computer Architecture’s Changing Definition

• 1950s to 1960s: Computer Architecture Course: Computer Arithmetic

• 1970s to mid 1980s: Computer Architecture Course: Instruction Set
Design, especially ISA appropriate for compilers

• 1990s: Computer Architecture Course:
Design of CPU, memory system, I/O system, Multiprocessors, Networks

• 2000s: Computer Architecture Course: Multi-core design, on-chip
networking, parallel programming, power reduction, instruction level
parallelism

• ~2013: Computer Architecture Course: Data and thread level parallelism?
Self adapting systems? Security and reliability? Warehouse scale
computing?

Outline

•What is and what does a computer architect?

•Classes of computers

•Trends in technology

•Defining computer architecture

•New definition of computer architecture

22

21

22

12

• Old Conventional Wisdom (CW): Power is free, Transistors expensive

• New CW: “Power wall” Power expensive, Transistors free (Can put more on chip than can afford to turn
on)

• Old CW: Sufficiently increasing Instruction Level Parallelism via compilers, innovation (Out-of-order,
speculation, VLIW, …)

• New CW: “ILP wall” law of diminishing returns on more HW for ILP

• Old CW: Multiplies are slow, Memory access is fast

• New CW: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

• Old CW: Uniprocessor performance 2X / 1.5 yrs

• New CW: Power Wall + ILP Wall + Memory Wall = “Brick Wall”
 Uniprocessor performance now 2X / 5(?) yrs

Change in chip design - multiple cores: 2X processors per chip / ~2 years
 More power efficient to use a large number of simpler processors rather than a small number of complex

processors

Crossroads: Conventional Wisdom in Comp. Arch.

23

24

Computer Architecture is an Integrated Approach
• Old definition of computer architecture:

• Instruction set design

• New definition: design the organization (memory design,
memory interconnect, internal CPU, multicore) and hardware
(detailed logic design, packaging) to meet goals and functional
requirements

• What really matters is the functioning of the complete system:
application, operating system, compiler, hardware

• It is very important to think across all hardware/software
boundaries

– New Technology New Capabilities New Architectures New Tradeoffs

23

24

13

Part 2:
Computer Architecture –

Design Principles and Analysis

26

Outline
•Quantitative principles of design

1. Take Advantage of Parallelism

2. Principle of Locality

3. Focus on the Common Case

4. Amdahl’s Law

5. The Processor Performance Equation

•Culture of anticipating and exploiting advances in
technology - technology performance trends

•Careful, quantitative comparisons
 Define and quantify power, cost, dependability, relative performance

25

26

14

27

1) Taking Advantage of Parallelism
•Detailed HW design

 Carry look-ahead adders use parallelism to speed up computing sums from linear
to logarithmic in number of bits per operand

 Multiple memory banks searched in parallel in set-associative caches

•Pipelining: overlap instruction execution to reduce the total
time to complete an instruction sequence
 Not every instruction depends on immediate predecessor executing

instructions completely/partially in parallel possible
 Classic 5-stage pipeline:

1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

• Increasing throughput of server computer via multiple
processors or multiple disks

2) The Principle of Locality

•The Principle of Locality:
 Program access a relatively small portion of the address space at any

instant of time

•Two Different Types of Locality:
 Temporal Locality (Locality in Time): If an item is referenced, it will tend

to be referenced again soon (e.g., loops, reuse)

 Spatial Locality (Locality in Space): If an item is referenced, items whose
addresses are close by tend to be referenced soon
(e.g., straight line code, array access)

•Last 30 years, HW relied on locality for speed

28

27

28

15

29

3) Focus on the Common Case - “Make Frequent Case Fast”

•Common sense guides computer design
 Since its engineering, common sense is valuable

• In making a design trade-off, favor the frequent case over the
infrequent case
 E.g., Instruction fetch and decode unit used more frequently than multiplier, so

optimize it first

•Frequent case is often simpler and can be done faster than
the infrequent case
 E.g., overflow is rare when adding 2 numbers, so improve performance by

optimizing more common case of no overflow
 May slow down overflow, but overall performance improved by optimizing for the

normal case

•What is frequent case? How much is performance improved
by making frequent case faster?

 => Amdahl’s Law

30

4) Amdahl’s Law

29

30

16

31

Amdahl’s Law example
• New CPU 10X faster

• I/O bound server, so 60% time waiting for I/O

• Apparently, it is human nature to be attracted by 10X faster, vs. keeping
in perspective it is just 1.6X faster

()

()
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

==

+−

=

+−

=

32

5) Processor Performance Equation

 Inst Count CPI Cycle time
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

31

32

17

33

Cycles Per Instruction (CPI)

“Instruction Frequency”

j

n

j
j I CPI TimeCycle time CPU =

=1

Count nInstructio

I
 F where F CPI CPI j

j

n

j
jj = =

=1

34

Outline
•Quantitative principles of design

1. Take Advantage of Parallelism

2. Principle of Locality

3. Focus on the Common Case

4. Amdahl’s Law

5. The Processor Performance Equation

•Culture of anticipating and exploiting advances in
technology - technology performance trends

•Careful, quantitative comparisons
 Define and quantify power, cost, dependability, relative performance

33

34

18

35

Tracking Technology Performance Trends
• Detailed comparisons for four technologies over 20 years:

 Disks

 Memory

 Network

 Processors

• Compare ~1980s Archaic (Nostalgic) vs. ~2000s Modern (Newfangled)

 Performance Milestones in each technology

• Compare Bandwidth vs. Latency improvements in performance over 20 years

• Bandwidth: number of events per unit time

 E.g., Mbits/second over network, Mbytes/second from disk

• Latency: elapsed time for a single event

 E.g., one-way network delay in microseconds, average disk access time in
milliseconds

36

Disks: Archaic vs. Modern
• Seagate 373453, 2003

• 15000 RPM (4X)

• 73.4 GBytes (2500X)

• Tracks/Inch: 64,000 (80X)

• Bits/Inch: 533,000 (60X)

• Four 2.5” platters
(in 3.5” form factor)

• Bandwidth:
86 MBytes/sec (140X)

• Latency: 5.7 ms (8X)

• Cache: 8 MBytes

• CDC Wren I, 1983

• 3600 RPM

• 0.03 GBytes capacity

• Tracks/Inch: 800

• Bits/Inch: 9,550

• Three 5.25” platters

• Bandwidth:
0.6 MBytes/sec

• Latency: 48.3 ms

• Cache: none

35

36

19

37

Latency Lags Bandwidth (for last ~20 years)

• Performance Milestones:

• Disk: 3600, 5400, 7200, 10000,
15000 RPM

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Disk

(Latency improvement

= Bandwidth improvement)

38

Memory: Archaic vs. Modern

• 1980 DRAM
(asynchronous)

• 0.06 Mbits/chip

• 64,000 xtors, 35 mm2

• 16-bit data bus per module,
16 pins/chip

• 13 Mbytes/sec

• Latency: 225 ns

• (no block transfer)

• 2000 Double Data Rate Synchr.
(clocked) DRAM

• 256.00 Mbits/chip (4000X)

• 256,000,000 xtors, 204 mm2

• 64-bit data bus per
DIMM, 66 pins/chip (4X)

• 1600 Mbytes/sec (120X)

• Latency: 52 ns (4X)

• Block transfers (page mode)

37

38

20

39

• Performance Milestones:

• Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,
DDR SDRAM

• Disk: 3600, 5400, 7200,
10000, 15000 RPM

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Memory
Disk

(Latency improvement

= Bandwidth improvement)

Latency Lags Bandwidth (for last ~20 years)

40

LANs: Archaic vs. Modern
• Ethernet 802.3

• Year of Standard: 1978

• 10 Mbits/s
link speed

• Latency: 3000 msec

• Shared media

• Coaxial cable

• Ethernet 802.3ae

• Year of Standard: 2003

• 10,000 Mbits/s (1000X)
link speed

• Latency: 190 msec (15X)

• Switched media

• Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick,
twisted to avoid antenna effect

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle

39

40

21

41

• Performance Milestones:

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM

• Disk: 3600, 5400, 7200, 10000,
15000 RPM

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Memory

Network

Disk

(Latency improvement

= Bandwidth improvement)

Latency Lags Bandwidth (for last ~20 years)

42

CPUs: Archaic vs. Modern
• 1982 Intel 80286

• 12.5 MHz

• 2 MIPS (peak)

• Latency 320 ns

• 134,000 xtors, 47 mm2

• 16-bit data bus, 68 pins

• Microcode interpreter,
separate FPU chip

• (no caches)

• 2001 Intel Pentium 4

• 1500 MHz = 1.5 GHz (120X)

• 4500 MIPS (peak) (2250X)

• Latency 15 ns (20X)

• 42,000,000 xtors, 217 mm2

• 64-bit data bus, 423 pins

• 3-way superscalar,
Dynamic translate to RISC,
Superpipelined (22 stage),
Out-of-Order execution

• On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

41

42

22

43

• Performance Milestones:

• Processor: ‘286, ‘386, ‘486,
Pentium, Pentium Pro, Pentium 4
(21x,2250x)

• Ethernet: 10Mb, 100Mb, 1000Mb,
10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000,
15000 RPM (8x,143x)1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Processor

Memory

Network

Disk

(Latency improvement

= Bandwidth improvement)

CPU high,
Memory low
(“Memory
Wall”)

(Latency = simple operation w/o contention,
BW = best-case)

Latency Lags Bandwidth (for last ~20 years)

44

6 Reasons for “Latency Lags BandWidth”

1. Moore’s Law helps BW more than latency
• Faster transistors, more transistors, more pins

help Bandwidth

• MPU Transistors: 0.130 vs. 42 M xtors (300X)

• DRAM Transistors: 0.064 vs. 256 M xtors (4000X)

• MPU Pins: 68 vs. 423 pins (6X)

• DRAM Pins: 16 vs. 66 pins (4X)

• Smaller, faster transistors but latency has not reduced
as dramatically with successive generations

• Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)

• MPU Die Size: 35 vs. 204 mm2 (ratio sqrt 2X)

• DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt 2X)

43

44

23

45

2. Distance limits latency
• Size of DRAM block long bit and word lines

 most of DRAM access time

• 1. & 2. explains linear latency vs. square BW

3. Bandwidth easier to sell (“bigger=better”)
• E.g., 10 Gbits/s Ethernet (“10 Gig”) vs. 10 msec latency Ethernet

• 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency

• Even if it is just marketing, customers are now trained

• Since bandwidth sells, more resources thrown at bandwidth, which
further tips the balance

6 Reasons for “Latency Lags BandWidth”

46

4. Latency helps BW, but not vice versa
• Spinning disk faster improves both bandwidth and rotational

latency

• Lower DRAM latency
More access/second (higher bandwidth)

• Higher linear density helps disk BW
 (and capacity), but not disk Latency

• More cores help BW (throughput), not latency

6 Reasons for “Latency Lags BandWidth”

45

46

24

47

5. Bandwidth hurts latency
• Queues help Bandwidth, hurt Latency (Queuing Theory)

• Adding chips to widen a memory module increases Bandwidth but higher
fan-out on address lines may increase Latency

6. Operating System overhead hurts Latency more
than Bandwidth

• Long messages amortize overhead;
overhead bigger part of short messages

 It takes longer to create and to send a long message,

 which is needed instead of a short message to lessen

 average cost per data byte of fixed size message overhead

6 Reasons for “Latency Lags BandWidth”

48

Sum-up of Technology Trends
•For disk, LAN, memory, and microprocessor, bandwidth

improves by more than the square of latency improvement
 In the time that bandwidth doubles, latency improves by no more than 1.2X to

1.4X

•Lag of gains for latency vs. bandwidth probably even larger
in real systems, as bandwidth gains multiplied by replicated
components
 Multiple processors in a cluster or even on a chip
 Multiple disks in a disk array
 Multiple memory modules in a large memory
 Simultaneous communication in switched local area networks (LANs)

•HW and SW developers should innovate assuming Latency
lags Bandwidth

47

48

25

49

Outline
•Quantitative principles of design

1. Take Advantage of Parallelism

2. Principle of Locality

3. Focus on the Common Case

4. Amdahl’s Law

5. The Processor Performance Equation

•Culture of anticipating and exploiting advances in
technology - technology performance trends

•Careful, quantitative comparisons
 Define and quantify power, cost, dependability, relative performance

Metrics used to Compare Designs
•Energy and Power

 Also peak power and peak switching current

•Cost
 Die cost and system cost

•Reliability
 Resiliency to electrical noise, part failure
 Robustness to bad software, operator error

•Execution Time
 Average and worst-case
 Latency vs. Throughput

•Maintainability
 System administration costs

•Compatibility
 Software costs dominate

49

50

26

51

Performance: What to Measure
• Usually rely on benchmarks vs. real workloads

• To increase predictability, collections of benchmark applications, called
benchmark suites, are popular

• SPECCPU: popular desktop benchmark suite
 CPU only, split between integer and floating point programs
 SPECint2000 had 12 integer, SPECfp2000 had 14 integer codes
 SPEC CPU2006 has 12 integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006)
 SPECSFS (NFS file server) and SPECWeb (WebServer) have been added as server benchmarks

• Transaction Processing Council measures server performance and cost-
performance for databases
 TPC-C Complex query for Online Transaction Processing
 TPC-H models ad hoc decision support
 TPC-W a transactional web benchmark
 TPC-App application server and web services benchmark

CINT2006 for Opteron X4 2356
Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 0.4 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 0.4 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 0.4 24 8,050 11.1

mcf Combinatorial optimization 336 10.00 0.4 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 0.4 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 0.4 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 0.4 37 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 0.4 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 0.4 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 0.4 690 6,250 9.1

astar Games/path finding 1,082 1.79 0.4 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 0.4 1,143 6,900 6.0

Geometric mean 11.7

51

52

27

How to Mislead with Performance Reports
1. Select pieces of workload that work well on your design, ignore others
2. Use unrealistic data set sizes for application (too big or too small)
3. Report throughput numbers for a latency benchmark
4. Report latency numbers for a throughput benchmark
5. Report performance on a kernel and claim it represents an entire application
6. Use 16-bit fixed-point arithmetic (because it’s fastest on your system) even though application requires 64-bit

floating-point arithmetic
7. Use a less efficient algorithm on the competing machine
8. Report speedup for an inefficient algorithm (bubblesort)
9. Compare hand-optimized assembly code with unoptimized C code
10. Compare your design using next year’s technology against competitor’s year old design (1% performance

improvement per week)
11. Ignore the relative cost of the systems being compared
12. Report averages and not individual results
13. Report speedup over unspecified base system, not absolute times
14. Report efficiency not absolute times
15. Report MFLOPS not absolute times (use inefficient algorithm)

[David Bailey, “Twelve ways to fool the masses when giving performance results for parallel supercomputers”]

Summary

•Computer Architecture is much more than just ISA

•Computer Architecture skill sets:
1. Quantitative approach to design

2. Technology tracking and anticipation

3. Appropriate comparison metrics

•Computer Engineering at the crossroads from sequential
to parallel computing
 Requires innovation in many fields, including computer architecture

•Read Chapter 1, Appendix A, B, C of textbook

54

53

54

	Slide 1: Lecture 1 Introduction
	Slide 2: Admin
	Slide 3: Outline
	Slide 4: Why Study Computer Architecture?
	Slide 5: What is a Computer Architect?
	Slide 6: Computing Devices Then…
	Slide 7: …Computing Systems Today
	Slide 8: Classes of Computers
	Slide 9: Bell's Law of Computer Classes
	Slide 10: Bell’s Law – new class per decade
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Bottom-line: Technology constantly on the move!
	Slide 16
	Slide 17: Example: Intel Sandy Bridge (i3,i5,i7; 2011-)
	Slide 18: Example: AMD Ryzen (2017-)
	Slide 19: IBM Blue Gene A2 processor (2010-)
	Slide 20
	Slide 21
	Slide 22: Outline
	Slide 23: Crossroads: Conventional Wisdom in Comp. Arch.
	Slide 24
	Slide 25: Part 2: Computer Architecture – Design Principles and Analysis
	Slide 26: Outline
	Slide 27: 1) Taking Advantage of Parallelism
	Slide 28: 2) The Principle of Locality
	Slide 29: 3) Focus on the Common Case - “Make Frequent Case Fast”
	Slide 30: 4) Amdahl’s Law
	Slide 31: Amdahl’s Law example
	Slide 32: 5) Processor Performance Equation
	Slide 33: Cycles Per Instruction (CPI)
	Slide 34: Outline
	Slide 35: Tracking Technology Performance Trends
	Slide 36: Disks: Archaic vs. Modern
	Slide 37: Latency Lags Bandwidth (for last ~20 years)
	Slide 38: Memory: Archaic vs. Modern
	Slide 39: Latency Lags Bandwidth (for last ~20 years)
	Slide 40: LANs: Archaic vs. Modern
	Slide 41: Latency Lags Bandwidth (for last ~20 years)
	Slide 42: CPUs: Archaic vs. Modern
	Slide 43: Latency Lags Bandwidth (for last ~20 years)
	Slide 44: 6 Reasons for “Latency Lags BandWidth”
	Slide 45: 6 Reasons for “Latency Lags BandWidth”
	Slide 46: 6 Reasons for “Latency Lags BandWidth”
	Slide 47: 6 Reasons for “Latency Lags BandWidth”
	Slide 48: Sum-up of Technology Trends
	Slide 49: Outline
	Slide 50: Metrics used to Compare Designs
	Slide 51: Performance: What to Measure
	Slide 52: CINT2006 for Opteron X4 2356
	Slide 53: How to Mislead with Performance Reports
	Slide 54: Summary

