
1

COEN-4730 Computer Architecture
HW #2

Dept. of Electrical and Computer Engineering, Marquette University
Cristinel Ababei

Objective

To learn about Dinero IV - a cache simulator for memory reference traces. To use use Dinero simulator to
gain insights into replacement policy, unified vs. split, and multi-level caches.

1. Prerequisite: Linux in a Virtual Machine

If you have already a Linux machine or you have already done this before, you do not need to do this step.

The term virtualization means that you can have another OS over an existing OS. For instance, you can run
Windows on a Mac or you may install Linux on a Windows machine using virtualization software.

Installation Steps:
Create an Ubuntu VM following the steps described in this tutorial:
(please download and install a latest stable edition, LTS, of Ubuntu!)
https://henricasanova.github.io/files/vbox/VirtualBoxUbuntuHowTo.html
In my case, I installed VB in:
M:\VirtualBox

At this time, you should have Ubuntu installed inside the VirtualBox.
In my case I installed Ubuntu in:
M:\VirtualBox_VMs

NOTE: On Installing "Guest Additions" – Before doing the actions for that, first open a Terminal and install
a couple of things like this:
> su root

> nano /etc/sudoers

And uncomment the line:
#sudo ALL=(ALL) ALL

And also add this new line (change “cristinel” to your own user name you created for your Linux user account):
cristinel ALL=(ALL) ALL

Then save the change by doing CTRL-X and then Yes.
> sudo apt update

> sudo apt install -y build-essential

You should now see on the left side of your Ubuntu screen the Disc icon and if you hover above, it should
say “VBox_GAs_7.0.2”
Click on it.
Place mouse inside the new window and right-click, select Open in Terminal.
A new Terminal should open. Do in terminal to see all files:
>ls

>./autorun.sh

A new window will pop-up. Type your password in.
Then wait for the VB Guest Additions to install.
Shut-off (not restart, though you could try that first) the Ubuntu machine.

https://henricasanova.github.io/files/vbox/VirtualBoxUbuntuHowTo.html

2

Start the machine again and login.
That will finish the installation of Guest Additions.
After that select View->Auto-Resize Guest Display
At this time you should be able to maximize the window of your Linux Ubuntu!

At this time, go on wit the “Creating a Shared Folder” action.

I created mine as:

M:\VirtualBox_SharedFolder

Once your VM instance has restarted and you're logged in, open a Terminal and do:
>cd /media
>ls

And you should see the shared folder sf_ VirtualBox_SharedFolder (with an "sf_" in front)

One last issue to do: add your username to the "group" called vboxsf. That is to avoid to do sudo
all the time when dealing with the sf_ folder. In a Terminal do:
 >sudo usermod -a -G vboxsf cristinel (replace “Cristinel” with your user name)

Shutdown/restart your VM instance one last time, and you are set. From now on, you can always
use the /media/sf_VirtualBox_SharedFolder directory to allow files to exist both on your own
machine and within your Ubuntu VM.

At this time you should have Ubuntu installed.

Some basics:

Launch Ubuntu and open a new terminal.

As heads-up: you should always work inside your home directory – for this hw assignment and for the
future ones; not, in the shared folder between Windows and Linux! So, for example, in working for this
assignment, create a folder, named self-explanatorily as “hw2” and place all the stuff in there. To create for
example a new folder in your home directory do in a Terminal:
$ mkdir hw2

If you have not worked before in a Terminal on a Linux/Unix like machine – please take some time now
and learn some basics. There are tons of sites out there on introduction/tutorial for Linux beginners, etc.
Google and learn on your own now, so that you will know your way around a Linux machine. This is very
important, and it will save you headaches later on.

Some other basics:
To search for something that you may want to install, you can use “apt-cache search”; for example:
$ sudo apt-cache search emacs

To install something from what you found, you can use “apt-get install”; for example:
$ sudo apt-get install build-essential

As other examples, to install for example svn, flex, bison, and emacs you could do:
$ sudo apt-get install subversion
$ sudo apt-get install flex

3

$ sudo apt-get install bison
$ sudo apt-get install emacs

2. DINERO IV Trace-driven Uniprocessor Simulator

Note: This short description is adapted from the webpage of the simulator.

Dinero IV is a cache simulator for memory reference traces.

Some deep-seated limitations:
• Dinero IV is not a timing simulator. There is no notion of simulated time or cycles, only references.
• Dinero IV is not a functional simulator. Data & instructions do not move in and out of the caches; in

fact they don't exist! The primary result of simulation with Dinero IV is hit and miss information.
• Dinero IV isn't multi-threaded. If you have a multiprocessor with enough memory, you can run

multiple independent simulations concurrently.

The basic idea is to simulate a memory hierarchy consisting of various caches connected as one or more
trees, with reference sources (the processors) at the leaves and a memory at each root. The various
parameters of each cache can be set separately (architecture, policy, statistics). During initialization, the
configuration to be simulated is built up, one cache at a time, starting with each memory as a special case.
After initialization, each reference is fed to the appropriate top-level cache by a single simple function call.
Lower levels of the hierarchy are handled automatically.

Preparation

Download and install Dinero IV. Take some time to browse its documentation and take a quick look at the
source code (to just have an idea about how it was programmed). Installation Steps:

Step 1
Download Dinero IV (d4-7.tar.gz) from the following website and place the file in a directory of choice:
http://pages.cs.wisc.edu/~markhill/DineroIV/

Step 2
Unzip and untar the downloaded by running the following commands in the terminal window:
> gunzip d4-7.tar.gz
> tar -xvf d4-7.tar

Step 3
Inside a terminal window, cd to the d4-7 folder that was created in Step 2 and compile dinero with the
following commands:
> cd d4-7
> ./configure
> make
This creates the executable dineroIV.

Step 4 (Traces)
You will not have to generate your own trace files; that has been done. Traces for three programs, cc1 (C
compiler), spice (a circuit simulator) and tex (a document formatter) are provided as part of the archive
for this assignment; they are in compressed form. To use them, copy them into a directory you have

http://pages.cs.wisc.edu/~markhill/DineroIV/

4

created for this project and uncompress them. For example, to uncompress the cc1 trace file, you should
do:
> gunzip cc1.din.Z
This way you get cc1.din trace file. The names of all three trace files are cc1.din, spice.din, and tex.din
respectively.

Step 5 (Testing)
Inside the d4-7/ folder is the dineroIV executable, which is the dinero program. The way it’s run is like
this:
> ./dineroIV (options) < trace_file_name

Here options can specify the cache size, cache block size, and cache layout options; trace_file_name is the
name of the trace file.
To check out the available options:
 > ./dineroIV -help

You should see something like this:

Usage: dineroIV [options]

Valid options:

 -help Print this help message

 -copyright Give details on copyright and lack of warranty

 -contact Where to get the latest version or contact the authors

 -dineroIII Explain replacements for Dinero III options

 -custom F Generate and run custom simulator named F

 -lN-Tsize P Size

 -lN-Tbsize P Block size

 -lN-Tsbsize P Sub-block size (default same as block size)

 -lN-Tassoc U Associativity (default 1)

 -lN-Trepl C Replacement policy

 (l=LRU, f=FIFO, r=random) (default l)

 -lN-Tfetch C Fetch policy

 (d=demand, a=always, m=miss, t=tagged,

 l=load forward, s=subblock) (default d)

 -lN-Tpfdist U Prefetch distance (in sub-blocks) (default 1)

 -lN-Tpfabort U Prefetch abort percentage (0-100) (default 0)

 -lN-Twalloc C Write allocate policy

 (a=always, n=never, f=nofetch) (default a)

 -lN-Twback C Write back policy

 (a=always, n=never, f=nofetch) (default a)

 -lN-Tccc Compulsory/Capacity/Conflict miss statistics

 -skipcount U Skip initial U references

 -flushcount U Flush cache every U references

 -maxcount U Stop simulation after U references

 -stat-interval U Show statistics after every U references

 -informat C Input trace format

 (D=extended din, d=traditional din, p=pixie32, P=pixie64,

 b=binary) (default D)

 -on-trigger A Trigger address to start simulation

 -off-trigger A Trigger address to stop simulation

 -stat-idcombine Combine I&D cache stats

Key:

 U unsigned decimal integer

 S like U but with optional [kKmMgG] scaling suffix

 P like S but must be a power of 2

 C single character

 A hexadecimal address

 F string

5

 N cache level (1 <= N <= 5)

 T cache type (u=unified, i=instruction, d=data)

An example Dinero command is this:

> ./dineroIV -l1-isize 16384 -l1-iassoc 4 -l1-ibsize 32 -l1-irepl l -l1-dsize 32768 -l1-dassoc 2 -l1-dbsize 16 -
l1-drepl f -l1-dwalloc a -l1-dwback a -informat d < cc1.din > sample.out

Note the re-directions utilized:
{-informat d < cc1.din} This is the input to the command line which is a trace file, this trace file should be
available in the same folder.
{cc1.din > sample.out} This is the redirected output to be stored in a file called sample.out

Use your favorite text editor, such as emacs, to see the result:
> emacs sample.out

---Dinero IV cache simulator, version 7

---Written by Jan Edler and Mark D. Hill

---Copyright (C) 1997 NEC Research Institute, Inc. and Mark D. Hill.

---All rights reserved.

---Copyright (C) 1985, 1989 Mark D. Hill. All rights reserved.

---See -copyright option for details

---Summary of options (-help option gives usage information).

-l1-isize 16384

-l1-dsize 32768

-l1-ibsize 32

-l1-dbsize 16

-l1-isbsize 32

-l1-dsbsize 16

-l1-iassoc 4

-l1-dassoc 2

-l1-irepl l

-l1-drepl f

-l1-ifetch d

-l1-dfetch d

-l1-dwalloc a

-l1-dwback a

-skipcount 0

-flushcount 0

-maxcount 0

-stat-interval 0

-informat d

-on-trigger 0x0

-off-trigger 0x0

---Simulation begins.

---Simulation complete.

l1-icache

 Metrics Total Instrn Data Read Write Misc

 ----------------- ------ ------ ------ ------ ------ ------

 Demand Fetches 757341 757341 0 0 0 0

 Fraction of total 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

 Demand Misses 13743 13743 0 0 0 0

 Demand miss rate 0.0181 0.0181 0.0000 0.0000 0.0000 0.0000

 Multi-block refs 0

 Bytes From Memory 439776

 (/ Demand Fetches) 0.5807

 Bytes To Memory 0

 (/ Demand Writes) 0.0000

 Total Bytes r/w Mem 439776

 (/ Demand Fetches) 0.5807

l1-dcache

 Metrics Total Instrn Data Read Write Misc

 ----------------- ------ ------ ------ ------ ------ ------

 Demand Fetches 242661 0 242661 159631 83030 0

 Fraction of total 1.0000 0.0000 1.0000 0.6578 0.3422 0.0000

 Demand Misses 4248 0 4248 2095 2153 0

 Demand miss rate 0.0175 0.0000 0.0175 0.0131 0.0259 0.0000

 Multi-block refs 0

6

 Bytes From Memory 67968

 (/ Demand Fetches) 0.2801

 Bytes To Memory 40784

 (/ Demand Writes) 0.4912

 Total Bytes r/w Mem 108752

 (/ Demand Fetches) 0.4482

---Execution complete.

3. Assignment

Question 1: Replacement policy (to be done for each of the three traces)
Examine an 8K-byte, 2-way associative cache with 16-byte blocks. What are the average miss ratios for
LRU, FIFO, and random replacement policies? Examine the replacement policies by increasing the cache
size to 16K-byte. What conclusions can you draw from this experiment?

Question 2: Unified and split caches (use cc1.din only)
Compare the cache miss ratios of the following two systems:
• A system with a 32K-byte unified cache
• A system with a 16K-byte instruction-only cache and a 16K-byte data-only cache.
Assume the caches are 4-way set associative, LRU replacement policy and the block size is 32 bytes. What
conclusions can you draw from this experiment?

Question 3: Multi-level L2 Cache (use spice.din only)
Calculate the AMAT for 2-level cache, LRU replacement policy, with:
• level-1 cache size of 16KB and level-2 cache size of 64KB
• level-1 cache size of 32KB and level-2 cache size of 128KB
Assume direct-mapped for level-1 and 4-way set-associative for level-2 with block size of 16 bytes. The hit
time for level-1 is 1 clock cycle and for level-2 is 8 clock cycles. Let the miss penalty for level-2 be 50 clock
cycles. What can you say about the performance of the two cache organizations?

4. Deliverables

A report where you explain what you did and the results you got. Be concise and clear; however, do use
tables and plots as you deem necessary. Include at the end of your report the output of your simulations
for only one run of Dinero (any one you do during these experiments).

5. References and credits

[1] This assignment was inspired from the teaching materials of Avinash Kodi of Ohio University.

